[1] 王江峰, 伍贻兆, 季卫栋, 等. 高超声速复杂气动问题数值方法研究进展[J]. 航空学报,2015,36(1):159-175. WANG J F, WU Y Z, JI W D, et al. Progress in numerical simulation techniques of hypersonic aerodynamic problems[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):159-175(in Chinese).
[2] ALBERTSON C, VENKAT V. Shock interaction control for scramjet cowl leading edges:AIAA-2005-3289[J]. Reston, VA:AIAA, 2005.
[3] EDNEY B. Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock:Technical Report 115[R]. Stockholm:The Aeronautical Research Institute of Sweden, 1968.
[4] LU H B, YUE L J, XIAO Y B, et al. Interaction of isentropic compression waves with a bow shock[J]. AIAA Journal, 2013, 51(10):2474-2484.
[5] 肖丰收. 若干典型高超声速激波干扰流动特性研究[D]. 合肥:中国科学技术大学,2016:21-32. XIAO F S. Research on flow characteristics of some typical hypersonic shock wave interactions[D]. Hefei:University of Science and Technology of China, 2016:21-32(in Chinese).
[6] 桂业伟, 刘磊, 代光月,等. 高超声速飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报,2017, 38(7):020844. GUI Y W, LIU L, DAI G Y, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):020844(in Chinese).
[7] THORNTON E A, DECHAUMPHAI P. Coupled flow, thermal, and structural analysis of aerodynamically heated panels[J]. Journal of Aircraft, 1988, 25(11):1052-1059.
[8] KAZEMI-KAMYAB V, VAN ZUIJLEN A H, BIJL H. Analysis and application of high order implicit Runge-Kutta schemes for unsteady conjugate heat transfer:A strongly-coupled approach[J]. Journal of Computational Physics, 2014,272:471-486.
[9] CHEN F, LIU H, ZHANG S T. Coupled heat transfer and thermo-mechanical behavior of hypersonic cylindrical leading edges[J]. International Journal of Heat and Mass Transfer,2018,122:846-862.
[10] QIN Q H, XU J L, GUO S. Fluid-thermal analysis of aerodynamic heating over spiked blunt body configurations[J]. Acta Astronautica, 2017, 132:230-242.
[11] ZHAO X L, SUN Z X, TANG L S, et al. Coupled flow-thermal-structural analysis of hypersonic aerodynamically heated cylindrical leading edge[J]. Engineering Applications of Computational Fluid Mechanics,2011,5(2):170-179.
[12] ZHANG S T, CHEN F, LIU H. Time-adaptive, loosely coupled strategy for conjugate heat transfer problems in hypersonic flows[J]. Journal of Thermophysics and Heat Transfer, 2014, 28(4):1-12.
[13] WIETING A R, DECHAUMPHAI P, BEY K S, et al. Application of integrated fluid-thermal-structural analysis methods[J]. Thin-Walled Structures, 1991, 11(1-2):1-23.
[14] 李鹏飞, 吴颂平.类航天飞机前身结构与高超声速流场的耦合传热模拟分析[J].航空动力学报,2010,25(8):1705-1710. LI P F, WU S P. Numerical simulation of fluid-solid-thermal interaction in hypersonic flows[J]. Journal of Aerospace Power,2010,25(8):1705-1710(in Chinese).
[15] 姜贵庆, 童秉纲,曹树声. 以有限元方法为主体的计算气动热力学[J]. 力学与实践. 1992, 14(3):1-8. JIANG G Q, TONG B G, CAO S S. Computational aerothermodynamics based on finite element method[J]. Mechanics and Engineering,1992, 14(3):1-8(in Chinese).
[16] LIOU M S. A sequel to AUSM:AUSM+[J]. Journal of Computational Physics, 1996,129(2):364-382.
[17] VENKATAKRISHNAN V. On the accuracy of limiters and convergence to steady state solutions:AIAA-1993-0880[R]. Reston, VA:AIAA, 1993.
[18] VAN LEER B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[J]. Journal of Computational Physics, 1979, 32(1):101-136.
[19] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[20] HASELBACHER A, BLAZEK J. Accurate and efficient discretization of Navier-Stokes equations on mixed grids[J]. AIAA Journal, 2000, 38(11):2094-2102.
[21] 李佳伟, 王江峰, 杨天鹏, 等. 钝体外形气动加热与结构传热一体化数值模拟[J]. 推进技术, 2019, 40(1):33-43. LI J W, WANG J F, YANG T P, et al. Numerical simulation of integrated aeroheating-structural heat transfer study for blunt body[J]. Journal of Propulsion Technology, 2019, 40(1):33-43(in Chinese).
[22] VALLI A M P, CAREY G F, COUTINHO A L G A. Control strategies for timestep selection in finite element simulation of incompressible flows and coupled reaction-convection-diffusion processes[J]. International Journal for Numerical Methods in Fluids, 2005, 47(3):201-231.
[23] WIETING A R. Experimental study of shock wave interference heating on a cylindrical edge:NASA-TM-100484[R]. Washington, D.C.:NASA, 1987.
[24] 李佳伟, 王江峰, 杨天鹏, 等. 高超声速飞行器前缘流-热-固一体化计算[J]. 国防科技大学学报, 2018,40(6):9-16. LI J W, WANG J F, YANG T P, et al. Fluid-thermal-structural study of integrated algorithm for aerodynamically hypersonic heated leading edges[J]. Journal of National University of Defense Technology, 2018,40(6):9-16(in Chinese).
[25] PAPADOPOULOS P, VENKATAPATHY E, PRABHU D, et al. Current grid-generation strategies and future requirements in hypersonic vehicle design, analysis and testing[J]. Applied Mathematical Modelling, 1999,23(9):705-735.
[26] DECHAUMPHAI P, THORNTON E A, WIETING A R. Flow-thermal-structural study of aerodynamically heated leading edges[J]. Journal of Spacecraft and Rockets, 1989,26(4):201-209.
[27] FAY J A, RIDDELL F R. Theory of stagnation point heat transfer in dissociated air[J]. Journal of the Aeronautical Sciences, 1958, 25(2):73-85.
[28] HOLCOMB J E, CURTIS J T, SHOPE F L. A new version of the CVEQ hemisphere viscous shock layer program for equilibrium air:NASA TN AEDC-TMR-85-V7[R]. Washington, D.C.:NASA,1985.
[29] BILLIG F S. Shock-wave shapes around spherical and cylindrical-nosed bodies[J]. Journal of Spacecraft and Rockets,1967, 4(6):822-823.
[30] 耿湘人, 张涵信,沈清. 高超飞行器流场和固体结构温度场一体化计算新方法的初步研究[J]. 空气动力学学报,2002, 20(4):422-427. GENG X R, ZHANG H X, SHEN Q. Study on an integrated algorithm for the flow fields of high-speed vehicles and the heat transfer in solid structures[J]. Acta Aerodynamica Sinica, 2002, 20(4):422-427(in Chinese).
[31] 黄杰. 高超声速飞行器流热固多物理场耦合计算研究[D]. 哈尔滨:哈尔滨工业大学, 2013:33-36. HUANG J. Study on hypersonic vehicle fluid-thermal-structure muti-physics coupling calculation[D]. Harbin:Harbin Institute of Technology, 2013:33-36(in Chinese).
[32] WIETING A R, HOLDEN M S. Experimental study of shock wave interference heating on a cylindrical leading edge at Mach 6 and 8:AIAA-1987-1511[R]. Reston, VA:AIAA,1987.
[33] 张胜涛, 陈方, 刘洪. 高超声速进气道前缘流场-热-结构耦合分析[J]. 空气动力学学报, 2017, 35(3):436-443. ZHANG S T, CHEN F, LIU H. Fluid-thermal-structural coupling analysis on leading edge of hypersonic inlets[J]. Acta Aerodynamica Sinica, 2017, 35(3):436-443(in Chinese).