流体力学与飞行力学

“Ⅳ型”激波干扰中流-热-固耦合问题一体化计算分析

  • 李佳伟 ,
  • 王江峰 ,
  • 杨天鹏 ,
  • 李龙飞 ,
  • 王丁
展开
  • 南京航空航天大学 非定常空气动力学与流动控制工业和信息化部重点实验室, 南京 210016

收稿日期: 2019-05-30

  修回日期: 2019-06-17

  网络出版日期: 2019-07-10

基金资助

南京航空航天大学国防重大项目培育基金(NP2018402);国家数值风洞项目(NNW2018-ZT3B08);江苏高校优势学科建设工程资助项目

Integrated numerical analysis of fluid-thermal-structural problems in “Type Ⅳ” shock wave interference

  • LI Jiawei ,
  • WANG Jiangfeng ,
  • YANG Tianpeng ,
  • LI Longfei ,
  • WANG Ding
Expand
  • Key Laboratory of Unsteady Aerodynamics and Flow Control of Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2019-05-30

  Revised date: 2019-06-17

  Online published: 2019-07-10

Supported by

the Development Foundation for Major National Defense Projects of NUAA (NP2018402);National Numerical Wind Tunnel Project (NNW2018-ZT3B08);A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要

针对高超声速进气道前缘"Ⅳ型"激波干扰产生的气动加热与结构传热多物理场耦合计算问题,发展了一种基于有限体积法的流-热-固一体化计算方法。该方法采用一体化控制方程组统一离散求解外部高速流场与内部结构温度场,规避了传统分区耦合算法在时间域内交替迭代的繁琐数据交换策略。另外,提出一种新的双温阻模型计算流-固交界面的物性参数以保证计算准确性,采用LU-SGS隐式时间迭代和自适应时间步长以提高计算效率。采用经典高超声速二维圆管流-热-固耦合算例对该一体化方法进行验证,计算结果与试验值和参考文献数据吻合较好,证明了该方法的可靠性和正确性。利用一体化方法对高超声速前缘"Ⅳ型"激波干扰流-热-固耦合问题进行定常/非定常计算与分析,给出了温度与热流的时变特性,计算结果表明,激波干扰作用产生的超声速"喷流"不断冲击壁面,使得壁面最大压力系数增大约9倍,壁面最大热流增大约4.7倍,给高速飞行器的热防护设计与选材带来严峻挑战。同时,也表明了一体化计算方法可以较好地用于长航时飞行条件下与复杂飞行环境下的高超声速热防护系统的热环境特性分析与综合性能评估。

本文引用格式

李佳伟 , 王江峰 , 杨天鹏 , 李龙飞 , 王丁 . “Ⅳ型”激波干扰中流-热-固耦合问题一体化计算分析[J]. 航空学报, 2019 , 40(12) : 123190 -123190 . DOI: 10.7527/S1000-6893.2019.23190

Abstract

An integrated fluid-thermal-structural numerical method based on the finite volume method is proposed to study the thermal behavior of the multi-physical coupling of aerodynamic heating and thermal structural heat transfer for hypersonic cylindrical leading edge with "Type IV" shock wave interference. In this method, the external high-speed flow field and the internal structural temperature field are unified into the integrated governing equations, and the finite volume method is used to perform unified discretization and solution, avoiding the cumbersome data exchange strategy of the traditional partitioned coupling approach. In addition, a new dual temperature resistance model is developed to calculate the physical parameters on the flow-solid interface to ensure the calculation accuracy. The LU-SGS implicit time-stepping scheme and the adaptive unsteady time-step size are used to improve the calculation efficiency. The aerodynamically heated cylinder leading edge is in good agreement with the references and the experimental data, demonstrating the capability and reliability of the integrated method. Issues of the thermal structural response are studied for "Type IV" shock wave interference on hypersonic cylindrical leading edge. The property distributions of temperature and heat flux are obtained and the time-variant characteristics are presented and analyzed. The numerical simulation results show that the jet produced in "Type IV" shock interference impinges perpendicularly to the surface,and shock interference increases the maximum pressure coefficient by about 9 times and the maximum heat flux by about 4.7 times, posting severe challenges to the design and selection of thermal protection for high-speed vehicle. These results also show that the integrated method can provide theoretical and technical support for the comprehensive performance evaluation and optimization of hypersonic thermal protection systems under long-endurance flight conditions and complex flight environments.

参考文献

[1] 王江峰, 伍贻兆, 季卫栋, 等. 高超声速复杂气动问题数值方法研究进展[J]. 航空学报,2015,36(1):159-175. WANG J F, WU Y Z, JI W D, et al. Progress in numerical simulation techniques of hypersonic aerodynamic problems[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):159-175(in Chinese).
[2] ALBERTSON C, VENKAT V. Shock interaction control for scramjet cowl leading edges:AIAA-2005-3289[J]. Reston, VA:AIAA, 2005.
[3] EDNEY B. Anomalous heat transfer and pressure distributions on blunt bodies at hypersonic speeds in the presence of an impinging shock:Technical Report 115[R]. Stockholm:The Aeronautical Research Institute of Sweden, 1968.
[4] LU H B, YUE L J, XIAO Y B, et al. Interaction of isentropic compression waves with a bow shock[J]. AIAA Journal, 2013, 51(10):2474-2484.
[5] 肖丰收. 若干典型高超声速激波干扰流动特性研究[D]. 合肥:中国科学技术大学,2016:21-32. XIAO F S. Research on flow characteristics of some typical hypersonic shock wave interactions[D]. Hefei:University of Science and Technology of China, 2016:21-32(in Chinese).
[6] 桂业伟, 刘磊, 代光月,等. 高超声速飞行器流-热-固耦合研究现状与软件开发[J]. 航空学报,2017, 38(7):020844. GUI Y W, LIU L, DAI G Y, et al. Research status of hypersonic vehicle fluid-thermal-solid coupling and software development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):020844(in Chinese).
[7] THORNTON E A, DECHAUMPHAI P. Coupled flow, thermal, and structural analysis of aerodynamically heated panels[J]. Journal of Aircraft, 1988, 25(11):1052-1059.
[8] KAZEMI-KAMYAB V, VAN ZUIJLEN A H, BIJL H. Analysis and application of high order implicit Runge-Kutta schemes for unsteady conjugate heat transfer:A strongly-coupled approach[J]. Journal of Computational Physics, 2014,272:471-486.
[9] CHEN F, LIU H, ZHANG S T. Coupled heat transfer and thermo-mechanical behavior of hypersonic cylindrical leading edges[J]. International Journal of Heat and Mass Transfer,2018,122:846-862.
[10] QIN Q H, XU J L, GUO S. Fluid-thermal analysis of aerodynamic heating over spiked blunt body configurations[J]. Acta Astronautica, 2017, 132:230-242.
[11] ZHAO X L, SUN Z X, TANG L S, et al. Coupled flow-thermal-structural analysis of hypersonic aerodynamically heated cylindrical leading edge[J]. Engineering Applications of Computational Fluid Mechanics,2011,5(2):170-179.
[12] ZHANG S T, CHEN F, LIU H. Time-adaptive, loosely coupled strategy for conjugate heat transfer problems in hypersonic flows[J]. Journal of Thermophysics and Heat Transfer, 2014, 28(4):1-12.
[13] WIETING A R, DECHAUMPHAI P, BEY K S, et al. Application of integrated fluid-thermal-structural analysis methods[J]. Thin-Walled Structures, 1991, 11(1-2):1-23.
[14] 李鹏飞, 吴颂平.类航天飞机前身结构与高超声速流场的耦合传热模拟分析[J].航空动力学报,2010,25(8):1705-1710. LI P F, WU S P. Numerical simulation of fluid-solid-thermal interaction in hypersonic flows[J]. Journal of Aerospace Power,2010,25(8):1705-1710(in Chinese).
[15] 姜贵庆, 童秉纲,曹树声. 以有限元方法为主体的计算气动热力学[J]. 力学与实践. 1992, 14(3):1-8. JIANG G Q, TONG B G, CAO S S. Computational aerothermodynamics based on finite element method[J]. Mechanics and Engineering,1992, 14(3):1-8(in Chinese).
[16] LIOU M S. A sequel to AUSM:AUSM+[J]. Journal of Computational Physics, 1996,129(2):364-382.
[17] VENKATAKRISHNAN V. On the accuracy of limiters and convergence to steady state solutions:AIAA-1993-0880[R]. Reston, VA:AIAA, 1993.
[18] VAN LEER B. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov's method[J]. Journal of Computational Physics, 1979, 32(1):101-136.
[19] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8):1598-1605.
[20] HASELBACHER A, BLAZEK J. Accurate and efficient discretization of Navier-Stokes equations on mixed grids[J]. AIAA Journal, 2000, 38(11):2094-2102.
[21] 李佳伟, 王江峰, 杨天鹏, 等. 钝体外形气动加热与结构传热一体化数值模拟[J]. 推进技术, 2019, 40(1):33-43. LI J W, WANG J F, YANG T P, et al. Numerical simulation of integrated aeroheating-structural heat transfer study for blunt body[J]. Journal of Propulsion Technology, 2019, 40(1):33-43(in Chinese).
[22] VALLI A M P, CAREY G F, COUTINHO A L G A. Control strategies for timestep selection in finite element simulation of incompressible flows and coupled reaction-convection-diffusion processes[J]. International Journal for Numerical Methods in Fluids, 2005, 47(3):201-231.
[23] WIETING A R. Experimental study of shock wave interference heating on a cylindrical edge:NASA-TM-100484[R]. Washington, D.C.:NASA, 1987.
[24] 李佳伟, 王江峰, 杨天鹏, 等. 高超声速飞行器前缘流-热-固一体化计算[J]. 国防科技大学学报, 2018,40(6):9-16. LI J W, WANG J F, YANG T P, et al. Fluid-thermal-structural study of integrated algorithm for aerodynamically hypersonic heated leading edges[J]. Journal of National University of Defense Technology, 2018,40(6):9-16(in Chinese).
[25] PAPADOPOULOS P, VENKATAPATHY E, PRABHU D, et al. Current grid-generation strategies and future requirements in hypersonic vehicle design, analysis and testing[J]. Applied Mathematical Modelling, 1999,23(9):705-735.
[26] DECHAUMPHAI P, THORNTON E A, WIETING A R. Flow-thermal-structural study of aerodynamically heated leading edges[J]. Journal of Spacecraft and Rockets, 1989,26(4):201-209.
[27] FAY J A, RIDDELL F R. Theory of stagnation point heat transfer in dissociated air[J]. Journal of the Aeronautical Sciences, 1958, 25(2):73-85.
[28] HOLCOMB J E, CURTIS J T, SHOPE F L. A new version of the CVEQ hemisphere viscous shock layer program for equilibrium air:NASA TN AEDC-TMR-85-V7[R]. Washington, D.C.:NASA,1985.
[29] BILLIG F S. Shock-wave shapes around spherical and cylindrical-nosed bodies[J]. Journal of Spacecraft and Rockets,1967, 4(6):822-823.
[30] 耿湘人, 张涵信,沈清. 高超飞行器流场和固体结构温度场一体化计算新方法的初步研究[J]. 空气动力学学报,2002, 20(4):422-427. GENG X R, ZHANG H X, SHEN Q. Study on an integrated algorithm for the flow fields of high-speed vehicles and the heat transfer in solid structures[J]. Acta Aerodynamica Sinica, 2002, 20(4):422-427(in Chinese).
[31] 黄杰. 高超声速飞行器流热固多物理场耦合计算研究[D]. 哈尔滨:哈尔滨工业大学, 2013:33-36. HUANG J. Study on hypersonic vehicle fluid-thermal-structure muti-physics coupling calculation[D]. Harbin:Harbin Institute of Technology, 2013:33-36(in Chinese).
[32] WIETING A R, HOLDEN M S. Experimental study of shock wave interference heating on a cylindrical leading edge at Mach 6 and 8:AIAA-1987-1511[R]. Reston, VA:AIAA,1987.
[33] 张胜涛, 陈方, 刘洪. 高超声速进气道前缘流场-热-结构耦合分析[J]. 空气动力学学报, 2017, 35(3):436-443. ZHANG S T, CHEN F, LIU H. Fluid-thermal-structural coupling analysis on leading edge of hypersonic inlets[J]. Acta Aerodynamica Sinica, 2017, 35(3):436-443(in Chinese).
文章导航

/