流体力学与飞行力学

非结构混合网格自适应并行技术

  • 唐静 ,
  • 张健 ,
  • 李彬 ,
  • 崔鹏程 ,
  • 周乃春
展开
  • 1. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000;
    2. 西北工业大学 航空学院, 西安 710072

收稿日期: 2019-06-10

  修回日期: 2019-06-24

  网络出版日期: 2019-07-02

Parallel algorithms for unstructured hybrid mesh adaptation

  • TANG Jing ,
  • ZHANG Jian ,
  • LI Bin ,
  • CUI Pengcheng ,
  • ZHOU Naichun
Expand
  • 1. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2019-06-10

  Revised date: 2019-06-24

  Online published: 2019-07-02

摘要

计算流体力学(CFD)模拟实际工程问题所采用的网格规模可达千万量级,并行技术是减少计算时间的有效方法。耦合流场信息的网格自适应技术能有效动态优化计算网格,被NASA视为一项亟待发展的CFD关键技术。混合网格自适应系统包含网格分布优化、表面网格投影和空间网格匹配等关键技术。针对以上3项关键技术分别建立了高效的并行算法。首先,提出了"先唯一后同一"的两步法策略实现了网格单元分布优化过程的并行相容性;其次,基于局部曲面拟合思想,实现了曲面重构和新增物理网格点投影的完全并行;再次,提出了空间网格匹配技术的半并行算法,快速解决了网格单元交错问题。为了提高后续流场计算的并行效率,发展了基于并行重分区-网格数据迁移方法的动态负载平衡技术,并采用圆柱激波流场自适应模拟对动态负载平衡技术进行初步验证。最后,采用三角翼自适应加密测试了自适应系统的并行效率。结果表明,建立的混合网格自适应系统并行效率较高,且相比流场求解耗费总时间的比例低于1%。

本文引用格式

唐静 , 张健 , 李彬 , 崔鹏程 , 周乃春 . 非结构混合网格自适应并行技术[J]. 航空学报, 2020 , 41(1) : 123202 -123202 . DOI: 10.7527/S1000-6893.2019.23202

Abstract

The mesh elements can reach ten-millions for real engineering cases to simulate their flow field with CFD. The parallel technique is an effective way to reduce the computing time. Mesh adaptation coupled with flow information can dynamically optimize computing mesh and has been considered by NASA as a key technique to be urgently developed. Elements distribution optimization, surface points projection, and inner points matching are three essential techniques for hybrid mesh adaptation. In this study, parallel algorithms for these three techniques are established. First, the two-stage strategy, which is called uniqueness-then-identity, is proposed to obtain the parallel consistence for the process of elements distribution optimization. Next, based on the local surface fitting method, the entire parallel algorithm is developed for surface reconstruction and new physical points projection. Then, the half-parallel algorithm for inner points movement is devised to efficiently eliminate the overlapping of mesh elements. To increase the parallel efficiency of the sequent flow field calculation, the dynamic load balance method, based on parallel partitioning and mesh transferring methods, is developed, and the flow around a cylinder is simulated to verify the dynamic load balance method. Finally, mesh refinement with adaptation for a delta-wing was adopted to test the parallel efficiency of the adaptation system. Numerical results show that the parallel efficiency of the hybrid mesh adaptation system is high enough and the total time cost is less than 1% of the flow solver.

参考文献

[1] BAKER T J. Mesh generation:Art or science[J]. Progress in Aerospace Sciences, 2005, 41(1):29-63.
[2] SLOTNIK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aeroscience:NASA/CR-2014-218178[R]. Washinton,D.C.:NASA, 2014.
[3] 孙旭, 张家忠, 黄科峰. 基于弹簧近似的非结构化网格自适应处理方法[J]. 西安交通大学学报, 2010, 44(9):104-108. SUN X, ZHANG J Z, HUANG K F. Spring analogy-based adaptive method for unstructured grids[J]. Journal of Xi'an Jiaotong University, 2010, 44(9):104-108(in Chinese).
[4] GREENE P, SCHOFILD S, NOURGALIEV R. Dynamic mesh adaptation for front evolution using discontinuous Galerkin based weighted condition number relaxation[J]. Journal of Computational Physics, 2017, 335:664-687.
[5] 唐志共, 陈浩, 毕林, 等. 自适应笛卡尔网格超声速黏性流动数值模拟[J]. 航空学报, 2018, 39(5):121697. TANG Z G, CHEN H, BI L, et al. Numerical simulation of supersonic viscous flow based on adaptive Cartesian grid[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):121697(in Chinese).
[6] MARCUM D, ALAUZET F. 3D metric-aligned and orthogonal solution adaptive mesh generation[J]. Procedia Engineering, 2017, 203(1):78-90.
[7] SENGUTTUVAN V, CHALASANI S, LUKE E A, et al. Adaptive mesh refinement using general elements:AIAA-2005-0927[R]. Reston, VA:AIAA, 2005.
[8] 张扬, 张来平, 赫新, 等. 基于自适应混合网格的脱体涡模拟[J]. 航空学报, 2016, 37(12):3605-3614. ZHANG Y, ZHANG L P, HE X, et al. Detached eddy simulation based on adaptive hybrid grids[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3605-3614(in Chinese).
[9] 唐静, 崔鹏程, 贾洪印, 等. 非结构混合网格鲁棒自适应技术[J]. 航空学报, 2019, 40(10):122894. TANG J, CUI P C, JIA H Y, et al. Robust adaptation techniques for unstructured hybrid mesh[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10):122894(in Chinese).
[10] TANG J, LI B, CHEN J, et al. Large scale parallel computing for fluid dynamics on unstructured grid[C]//15th International Symposium on Parallel and Distributed Computting, 2016.
[11] 陈刚,王磊,陆忠华,等. 万核级并行飞机气动模拟软件CCFD研制[J]. 华中科技大学学报(自然科学版),2011,39(增刊1):99-101. CHEN G, WANG L, LU Z H, et al. Development of ten-thousand-core parallel software CCFD for aircraft aerodynamics simulation[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39(Suppl. 1):99-101(in Chinese).
[12] YANG C, XUE W, FU H, et al. 10M-core scalable fully-implicit solver for nonhydrostatic atmospheric dynamics[C]//Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2016.
[13] XU C, DENG X, ZHANG L, et al. Parallelizing a high-order CFD software for 3D, multi-block, structural grids on the TianHe-1A supercomputer[C]//International Supercomputing Conference, 2016:26-39.
[14] KAVOUKLIS C, KALLINDERIS Y. Parallel adaptation of general three-dimensional hybrid meshes[J]. Journal of Computational Physics, 2010, 229:3454-3473.
[15] VARADARAJAN R, HWANG I. An efficient dynamic load balancing algorithm for adaptive mesh refinement[C]//ACM Symposium on Applied Computing, 1970:464-472.
[16] PARK M A, DARMOFAL D L. Parallel anisotropic tetrahedral adaptation:AIAA-2008-0917[R]. Reston, VA:AIAA, 2008.
[17] BOILLAT J, BRUCE F, KROPF P. A dynamic load-balancing algorithm for molecular dynamics simulation on multi-processor systems[J]. Journal of Computational Physics, 1991, 96:1-14.
[18] CYBENKO G. Dynamic load balancing for distributed memory multi-processors[J]. Journal of Parallel and Distributed Computing, 1989, 7:279-301.
[19] LEPAGE C Y, STCYR A, HABASHI W G. Parallel unstructured mesh adaptation on distributed memory systems:AIAA-2004-2532[R]. Reston, VA:AIAA, 2004.
[20] PARK Y M, KWON O J. Unsteady flow computations using a 3-D parallel unstructured dynamic mesh adaptation algorithm:AIAA-2001-0865[R]. Reston, VA:AIAA, 2001.
[21] LIAN Y Y, HSU K H, SHAO Y L, et al. Parallel adaptive mesh-refining scheme on a three-dimensional unstructured tetrahedral mesh and its applications[J]. Computer Physics Communications, 2006, 175:721-737.
[22] ANTEPARA O, LEHMKUHL O, CHIVA J, et al. Parallel adaptive mesh refinement simulation of the flow around a square cylinder at Re=22000[J]. Procedia Engineering, 2013, 61:246-250.
[23] OLIKER L, BISWAS R, GABOW H N. Parallel tetrahedral mesh adaptation with dynamic load balancing[J]. Parallel Computing, 2000, 26(12):1583-1608.
[24] CAVALLO P A. Further extension and validation of a parallel unstructured mesh adaptation package:AIAA-2005-0924[R]. Reston, VA:AIAA, 2005.
[25] ALAUZET F, LI X, SEOL E S, et al. Parallel anisotropic 3D mesh adaptation by mesh modification[J]. Engineering with Computers, 2006, 21:247-258.
[26] DIGONNET H, COUPEZ T, LAURE P, et al. Massively parallel anisotropic mesh adaptation[J]. International Journal of High Performance Computing Applications, 2017, 33(1):3-24.
[27] SCHLOEGEL K, KARYPIS G, KUMAR V. Wave front diffusion and lmsr:Algorithms for dynamic repartitioning of adaptive meshes[J]. IEEE Transactions on Parallel and Distributed Systems, 2001, 12(5):451-466.
[28] 唐静, 邓有奇, 马明生, 等. 飞翼气动优化中参数化和网格变形技术研究[J]. 航空学报, 2015, 36(5):1480-1490. TANG J, DENG Y Q, MA M S, et al. Parametrization and grid deformation techniques for flying-wing aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1480-1490(in Chinese).
[29] CHEN J T, ZHANG Y B, ZHOU N C, et al. Numerical investigations of the high-lift configuration with MFlow solver[J]. Journal of Aircraft, 2015, 52(4):1051-1062.
[30] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43:357-372.
[31] KIM J S, KWON O J. Improvement on block LU-SGS scheme for unstructured mesh Navier-Stokes computations:AIAA-2002-1061[R]. Reston, VA:AIAA, 2002.
[32] GONG X Q, CHEN J T, ZHOU N C, et al. The effects of turbulence model corrections on drag prediction of NASA common research model:AIAA-2014-4371[R]. Reston, VA:AIAA, 2014.
文章导航

/