[1] BAKER T J. Mesh generation:Art or science[J]. Progress in Aerospace Sciences, 2005, 41(1):29-63.
[2] SLOTNIK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aeroscience:NASA/CR-2014-218178[R]. Washinton,D.C.:NASA, 2014.
[3] 孙旭, 张家忠, 黄科峰. 基于弹簧近似的非结构化网格自适应处理方法[J]. 西安交通大学学报, 2010, 44(9):104-108. SUN X, ZHANG J Z, HUANG K F. Spring analogy-based adaptive method for unstructured grids[J]. Journal of Xi'an Jiaotong University, 2010, 44(9):104-108(in Chinese).
[4] GREENE P, SCHOFILD S, NOURGALIEV R. Dynamic mesh adaptation for front evolution using discontinuous Galerkin based weighted condition number relaxation[J]. Journal of Computational Physics, 2017, 335:664-687.
[5] 唐志共, 陈浩, 毕林, 等. 自适应笛卡尔网格超声速黏性流动数值模拟[J]. 航空学报, 2018, 39(5):121697. TANG Z G, CHEN H, BI L, et al. Numerical simulation of supersonic viscous flow based on adaptive Cartesian grid[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):121697(in Chinese).
[6] MARCUM D, ALAUZET F. 3D metric-aligned and orthogonal solution adaptive mesh generation[J]. Procedia Engineering, 2017, 203(1):78-90.
[7] SENGUTTUVAN V, CHALASANI S, LUKE E A, et al. Adaptive mesh refinement using general elements:AIAA-2005-0927[R]. Reston, VA:AIAA, 2005.
[8] 张扬, 张来平, 赫新, 等. 基于自适应混合网格的脱体涡模拟[J]. 航空学报, 2016, 37(12):3605-3614. ZHANG Y, ZHANG L P, HE X, et al. Detached eddy simulation based on adaptive hybrid grids[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3605-3614(in Chinese).
[9] 唐静, 崔鹏程, 贾洪印, 等. 非结构混合网格鲁棒自适应技术[J]. 航空学报, 2019, 40(10):122894. TANG J, CUI P C, JIA H Y, et al. Robust adaptation techniques for unstructured hybrid mesh[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10):122894(in Chinese).
[10] TANG J, LI B, CHEN J, et al. Large scale parallel computing for fluid dynamics on unstructured grid[C]//15th International Symposium on Parallel and Distributed Computting, 2016.
[11] 陈刚,王磊,陆忠华,等. 万核级并行飞机气动模拟软件CCFD研制[J]. 华中科技大学学报(自然科学版),2011,39(增刊1):99-101. CHEN G, WANG L, LU Z H, et al. Development of ten-thousand-core parallel software CCFD for aircraft aerodynamics simulation[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2011, 39(Suppl. 1):99-101(in Chinese).
[12] YANG C, XUE W, FU H, et al. 10M-core scalable fully-implicit solver for nonhydrostatic atmospheric dynamics[C]//Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2016.
[13] XU C, DENG X, ZHANG L, et al. Parallelizing a high-order CFD software for 3D, multi-block, structural grids on the TianHe-1A supercomputer[C]//International Supercomputing Conference, 2016:26-39.
[14] KAVOUKLIS C, KALLINDERIS Y. Parallel adaptation of general three-dimensional hybrid meshes[J]. Journal of Computational Physics, 2010, 229:3454-3473.
[15] VARADARAJAN R, HWANG I. An efficient dynamic load balancing algorithm for adaptive mesh refinement[C]//ACM Symposium on Applied Computing, 1970:464-472.
[16] PARK M A, DARMOFAL D L. Parallel anisotropic tetrahedral adaptation:AIAA-2008-0917[R]. Reston, VA:AIAA, 2008.
[17] BOILLAT J, BRUCE F, KROPF P. A dynamic load-balancing algorithm for molecular dynamics simulation on multi-processor systems[J]. Journal of Computational Physics, 1991, 96:1-14.
[18] CYBENKO G. Dynamic load balancing for distributed memory multi-processors[J]. Journal of Parallel and Distributed Computing, 1989, 7:279-301.
[19] LEPAGE C Y, STCYR A, HABASHI W G. Parallel unstructured mesh adaptation on distributed memory systems:AIAA-2004-2532[R]. Reston, VA:AIAA, 2004.
[20] PARK Y M, KWON O J. Unsteady flow computations using a 3-D parallel unstructured dynamic mesh adaptation algorithm:AIAA-2001-0865[R]. Reston, VA:AIAA, 2001.
[21] LIAN Y Y, HSU K H, SHAO Y L, et al. Parallel adaptive mesh-refining scheme on a three-dimensional unstructured tetrahedral mesh and its applications[J]. Computer Physics Communications, 2006, 175:721-737.
[22] ANTEPARA O, LEHMKUHL O, CHIVA J, et al. Parallel adaptive mesh refinement simulation of the flow around a square cylinder at Re=22000[J]. Procedia Engineering, 2013, 61:246-250.
[23] OLIKER L, BISWAS R, GABOW H N. Parallel tetrahedral mesh adaptation with dynamic load balancing[J]. Parallel Computing, 2000, 26(12):1583-1608.
[24] CAVALLO P A. Further extension and validation of a parallel unstructured mesh adaptation package:AIAA-2005-0924[R]. Reston, VA:AIAA, 2005.
[25] ALAUZET F, LI X, SEOL E S, et al. Parallel anisotropic 3D mesh adaptation by mesh modification[J]. Engineering with Computers, 2006, 21:247-258.
[26] DIGONNET H, COUPEZ T, LAURE P, et al. Massively parallel anisotropic mesh adaptation[J]. International Journal of High Performance Computing Applications, 2017, 33(1):3-24.
[27] SCHLOEGEL K, KARYPIS G, KUMAR V. Wave front diffusion and lmsr:Algorithms for dynamic repartitioning of adaptive meshes[J]. IEEE Transactions on Parallel and Distributed Systems, 2001, 12(5):451-466.
[28] 唐静, 邓有奇, 马明生, 等. 飞翼气动优化中参数化和网格变形技术研究[J]. 航空学报, 2015, 36(5):1480-1490. TANG J, DENG Y Q, MA M S, et al. Parametrization and grid deformation techniques for flying-wing aerodynamic optimization[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1480-1490(in Chinese).
[29] CHEN J T, ZHANG Y B, ZHOU N C, et al. Numerical investigations of the high-lift configuration with MFlow solver[J]. Journal of Aircraft, 2015, 52(4):1051-1062.
[30] ROE P L. Approximate Riemann solvers, parameter vectors, and difference schemes[J]. Journal of Computational Physics, 1981, 43:357-372.
[31] KIM J S, KWON O J. Improvement on block LU-SGS scheme for unstructured mesh Navier-Stokes computations:AIAA-2002-1061[R]. Reston, VA:AIAA, 2002.
[32] GONG X Q, CHEN J T, ZHOU N C, et al. The effects of turbulence model corrections on drag prediction of NASA common research model:AIAA-2014-4371[R]. Reston, VA:AIAA, 2014.