电子电气工程与控制

基于障碍凸化的改进环流APF路径规划

  • 贾正荣 ,
  • 王航宇 ,
  • 卢发兴
展开
  • 海军工程大学 兵器工程学院, 武汉 430033

收稿日期: 2019-05-28

  修回日期: 2019-06-21

  网络出版日期: 2019-07-02

Improved circulating APF route planning based on obstacle convexification

  • JIA Zhengrong ,
  • WANG Hangyu ,
  • LU Faxing
Expand
  • College of Weaponry Engineering, Naval University of Engineering, Wuhan 430033, China

Received date: 2019-05-28

  Revised date: 2019-06-21

  Online published: 2019-07-02

摘要

为改善人工势场法(APF)在复杂障碍环境下的路径规划能力,提出基于障碍凸化的改进环流APF路径规划方法。通过改变APF方法斥力势场的方向,使其形成绕行障碍边缘的环流,改善了APF方法在平台-目标位置连线与障碍边界垂直时可能陷入局部极小值的问题。针对多边形障碍(凹、凸)与圆形障碍,给出包括障碍初始化与相交障碍集合迭代凸化步骤的障碍凸化方法,将复杂障碍空间转换成为凸障碍的空间,避免平台进入凹多边形或相交障碍产生的凹区域而无解的问题。在仿真环境中,对比了传统APF方法、未使用障碍凸化的环流APF方法、使用障碍凸化的环流APF方法的路径规划结果,并分析了不同障碍数量、相交障碍数量条件下的方法计算耗时。根据结果,使用障碍凸化的环流APF方法能够明显改善APF方法在复杂障碍环境下的路径规划能力,方法实时性好,每个障碍所需的单步计算耗时约为0.02~0.03 ms,能够支持平台在复杂障碍环境下的在线路径规划。

本文引用格式

贾正荣 , 王航宇 , 卢发兴 . 基于障碍凸化的改进环流APF路径规划[J]. 航空学报, 2019 , 40(10) : 323189 -323189 . DOI: 10.7527/S1000-6893.2019.23189

Abstract

To improve the path planning ability of Artificial Potential Field (APF) in complex obstacle environments, an improved circulating APF path planning method based on obstacle convexification is proposed. By changing the direction of the repulsive potential field into a circulation around the edge of the obstacle of the APF method, this design solves the problem that the platform may fall into the local minimum when the platform-target line is perpendicular to the obstacle boundary. For the polygonal obstacles (both concave and convex) and circular obstacles, the obstacle convexification methods including the initial obstacle convexification and the iterative convexification for intersection set are given, which transforms the complex obstacle space into the convex obstacle space, avoiding the problem of no solution when the platform entering the concave polygon or concave zone caused by intersecting obstacles. In the simulation environment, the path planning results are compared when adopting the traditional APF method, the circulating APF method without the obstacle convexification, and the circulating APF method using the obstacle convexification. And the time consumptions of different methods are analyzed under different obstacle numbers and intersecting obstacle numbers. The results suggest that the circulating APF method using obstacle convexification can significantly improve the path planning performance under complex obstacle environments. In addition, this method has good real-time performance that the time consumption of single step calculation for every obstacle ranges from 0.02-0.03 ms, enabling the online path planning in complex obstacle environments.

参考文献

[1] NAKAZAWA K, TAKAHASHI K, KANEKO M. Movement control of accompanying robot based on artificial potential field adapted to dynamic environments[J]. Electrical Engineering in Japan, 2015, 192(1):25-35.
[2] MACKTOOBIAN M, SHOOREHDELI M A. Time-variant artificial potential field (TAPF):A breakthrough in power-optimized motion planning of autonomous space mobile robots[J]. Robotica, 2016, 34(5):1128-1150.
[3] MONTIEL O, SEPÚLVED A, ROBERT O, et al. Optimal path planning generation for mobile robots using parallel evolutionary artificial potential field[J]. Journal of Intelligent & Robotic Systems, 2015, 79(2):237-257.
[4] 朱毅, 张涛, 宋靖雁. 非完整移动机器人的人工势场法路径规划[J]. 控制理论与应用, 2010, 27(2):152-158. ZHU Y, ZHANG T, SONG J Y. Path planning for non-holonomic mobile robots using artificial potential field method[J]. Control Theory & Applications, 2010, 27(2):152-158(in Chinese).
[5] 何仁珂, 魏瑞轩, 张启瑞, 等. 基于拟态电势能的飞行器航路规划方法[J]. 北京航空航天大学学报, 2016, 42(7):1543-1549. HE R K, WEI R X, ZHANG Q R, et al. Mimetism electric potential energy motion planning algorithm for aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(7):1543-1549(in Chinese).
[6] 殷路, 尹怡欣. 基于动态人工势场法的路径规划仿真研究[J]. 系统仿真学报, 2009, 21(11):3325-3328. YIN L, YIN Y X. Simulation research on path planning based on dynamic artificial potential field[J]. Journal of System Simulation, 2009, 21(11):3325-3328(in Chinese).
[7] KITAMURA Y, TANAKA T, KISHINO F, et al. 3-D path planning in a dynamic environment using an octree and an artificial potential field[C]//International Conference on Intelligent Robots & Systems. Piscataway, NJ:IEEE Computer Society, 1995:474-481.
[8] NAIR R R, BEHERA L, KUMAR V, et al. Multi-satellite formation control for remote sensing applications using artificial potential field and adaptive fuzzy sliding mode control[J]. IEEE Systems Journal, 2015, 9(2):508-518.
[9] 卢恩超, 张邓斓, 宁雅男. 改进人工势场法的机器人路径规划[J]. 西北大学学报(自然科学版), 2012, 42(5):735-738. LU E C, ZHANG D L, NING Y N. Path planning for robot based on improved artificial potential field method[J]. Journal of Northwest University (Natural Science Edition), 2012, 42(5):735-738(in Chinese).
[10] 肖本贤, 余雷, 李善寿, 等. 逃逸人工势场法局部极小值策略的研究[J]. 系统仿真学报, 2007, 19(19):4495-4498. XIAO B X, YU L, LI S S, et al. Research of escaping local minima strategy for artificial potential field[J]. Journal of System Simulation, 2007, 19(19):4495-4498(in Chinese).
[11] 罗乾又, 张华, 王姮, 等. 改进人工势场法在机器人路径规划中的应用[J]. 计算机工程与设计, 2011, 32(4):1411-1413. LUO Q Y, ZHANG H, WANG H, et al. Application of improved artificial potential field approach in local path planning for mobile robot[J]. Computer Engineering and Design, 2011, 32(4):1411-1413(in Chinese).
[12] 张培艳, 吕恬生. 基于模拟退火-人工势场法的足球机器人路径规划研究[J]. 机械科学与技术, 2003, 22(4):547-548. ZHANG P Y, LYU T S. Soccer robot path planning based on artificial potential field approach with simulated annealing[J].Mechanical Science and Technology, 2003, 22(4):547-548(in Chinese).
[13] ZHU Q, YAN Y, XING Z. Robot path planning based on artificial potential field approach with simulated annealing[C]//International Conference on Intelligent Systems Design & Applications. Piscataway, NJ:IEEE Press, 2006:622-627.
[14] ZHANG P Y, LU T S, SONG L B. Soccer robot path planning based on the artificial potential field approach with simulated annealing[J]. Mechanical Science & Technology, 2003, 22(5):563-566.
[15] 于振中, 闫继宏, 赵杰. 改进人工势场法的移动机器人路径规划[J]. 哈尔滨工业大学学报, 2011, 43(1):50-55. YU Z Z, YAN J H, ZHAO J. Mobile robot path planning based on improved artificial potential field method[J]. Journal of Harbin Institute of Technology, 2011, 43(1):50-55(in Chinese).
[16] 张建英, 赵志萍, 刘暾. 基于人工势场法的机器人路径规划[J]. 哈尔滨工业大学学报, 2006, 38(8):1306-1309. ZHANG J Y, ZHAO Z P, LIU D. A path planning method for mobile robot based on artificial potential field[J]. Journal of Harbin Institute of Technology, 2006, 38(8):1306-1309(in Chinese).
[17] LEE M C, PARK M G. Artificial potential field based path planning for mobile robots using a virtual obstacle concept[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway, NJ:IEEE Press, 2003:735-740.
[18] HASSAN S, YOON J. Haptic assisted aircraft optimal assembly path planning scheme based on swarming and artificial potential field approach[J]. Advances in Engineering Software, 2014, 69:18-25.
[19] CHEN Y B, LUO G C, MEI Y S, et al. UAV path planning using artificial potential field method updated by optimal control theory[J]. International Journal of Systems Science, 2016, 47(6):14.
[20] DRUST M, DIETZ T, VERL A. Dynamic and interactive path planning and collision avoidance for an industrial robot using artificial potential field based method[M]. Berhin:Springer, 2011:413-421.
[21] FEDELE G, LUIGI D' A, CHIARAVALLOTI F, et al. Obstacles avoidance based on switching potential functions[J]. Journal of Intelligent and Robotic Systems, 2017(4):1-19.
[22] RUCHTI J, SENKBEIL R, CARROLL J, et al. Unmanned aerial system collision avoidance using artificial potential fields[J]. Journal of Aerospace Information Systems, 2014, 11(3):140-144.
[23] GUAN H L, JIAN I Y, YUE O M, et al. UAV path planning in mixed-obstacle environment via artificial potential field method improved by additional control force[J]. Asian Journal of Control, 2014, 17(5):1-11.
[24] LIU Y, ZHAO Y. A virtual-waypoint based artificial potential field method for UAV path planning[C]//2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC). Piscataway, NJ:IEEE Press, 2016:949-953.
[25] 朱旭, 闫茂德,张昌利,等.基于改进人工势场的无人机编队防碰撞控制方法[J].哈尔滨工程大学学报,2017,38(6):961-968. ZHU X, YAN M D, ZHANG C L, et al. UAV formation collision avoidance control method based on improved artificial potential field[J]. Journal of Harbin Engineering University,2017,38(6):961-968(in Chinese).
[26] 范世鹏, 祁琪,路坤锋,等.基于改进人工势场法的巡航导弹自主避障技术[J].北京理工大学学报,2018,38(8):828-834. FAN S P, QI Q, LU K F, et al. Autonomous collision avoidance technique of cruise missiles based on modified artificial potential method[J]. Transactions of Beijing Institute of Technology,2018,38(8):828-834(in Chinese).
[27] 王晓燕, 杨乐,张宇,等.基于改进势场蚁群算法的机器人路径规划[J].控制与决策,2018,33(10):1775-1781. WANG X Y, YANG L, ZHANG Y, et al. Robot path planning based on improved ant colony algorithm with potential field heuristic[J]. Control and Decision, 2018, 33(10):1775-1781(in Chinese).
[28] 王文彬, 秦小林,张力戈,等.基于滚动时域的无人机动态航迹规划[J].智能系统学报,2018,13(4):524-533. WANG W B, QIN X L, ZHANG L G, et al. Dynamic UAV trajectory planning based on receding horizon[J]. CAAI Transactions on Intelligent Systems, 2018, 13(4):524-533(in Chinese).
[29] 徐杨, 陆丽萍,褚端峰,等.无人车辆轨迹规划与跟踪控制的统一建模方法[J].自动化学报, 2019,45(4):799-807. XU Y, LU L P, CHU D F, et al. Unified modeling of trajectory planning and tracking for unmanned vehicle[J]. Acta Automatica Sinica, 2019, 45(4):799-807(in Chinese).
文章导航

/