流体力学与飞行力学

锯齿形转捩片触发高超声速进气道边界层转捩的大涡模拟

  • 张红军 ,
  • 朱志斌 ,
  • 尚庆 ,
  • 刘智勇 ,
  • 沈清
展开
  • 中国航天空气动力技术研究院, 北京 100074

收稿日期: 2019-01-22

  修回日期: 2019-02-14

  网络出版日期: 2019-06-06

基金资助

国家自然科学基金(11772316)

Large eddy simulation of hypersonic inlet boundary layer transition triggered by zig-zag trip

  • ZHANG Hongjun ,
  • ZHU Zhibin ,
  • SHANG Qing ,
  • LIU Zhiyong ,
  • SHEN Qing
Expand
  • China Academy of Aerospace Aerodynamics, Beijing 100074, China

Received date: 2019-01-22

  Revised date: 2019-02-14

  Online published: 2019-06-06

Supported by

National Natural Science Foundation of China (11772316)

摘要

为促进锯齿形转捩片在高超声速进气道中的应用,以地面风洞条件下的二元进气道为研究对象,采用高精度大涡模拟方法对锯齿形转捩片在三级压缩楔面上触发的边界层转捩现象开展了研究。数值方法基于隐式亚格子模型,空间离散采用高精度通量限制型紧致格式,时间推进采用显式Runge-Kutta方法。数值模拟清晰捕捉到了边界层转捩的空间发展演化过程,并获得了统计平均流场以及流场脉动特征。数值模拟结果表明转捩片能够有效触发进气道压缩面边界层转捩;通过与等熵压缩面及单楔面数值模拟结果的对比分析,获得了转捩片触发边界层转捩的内在机理,为后续研究工作奠定了基础。

本文引用格式

张红军 , 朱志斌 , 尚庆 , 刘智勇 , 沈清 . 锯齿形转捩片触发高超声速进气道边界层转捩的大涡模拟[J]. 航空学报, 2019 , 40(10) : 122930 -122930 . DOI: 10.7527/S1000-6893.2019.22930

Abstract

To promote the application of zig-zag trip in hypersonic inlet, a high-precision large eddy simulation method is used to examine the boundary layer transition triggered by zig-zag trip on three-stage compression wedge of two-dimensional inlet in wind tunnel. The numerical method is based on the implicit subgrid-scale model. The high-precision flux-limited compact scheme is used for spatial discretization and the explicit Runge-Kutta method for time marching. The numerical simulation clearly captures the spatial evolution process of boundary layer transition, and obtains the statistical mean flow field and fluctuation characteristics. The numerical simulation results show that the zig-zag trip can effectively trigger the boundary layer transition. By comparing the numerical simulation results with those of isentropic compression surface and single wedge surface, the mechanism of boundary layer transition is obtained and lays a foundation for further study.

参考文献

[1] BERRY S A, DIFULVIO M, KOWALKOWSKI M K. Forced boundary-layer transition on X-43(Hyper-X) in NASA LaRC 20-inch Mach 6 air tunnel:NASA/TM-2000-210316[R]. Washington, D.C.:NASA, 2000.
[2] BERRY S A, DARYABEIGI K, WURSTER K, et al. Boundary layer transition on X-43A:AIAA-2008-3736[R]. Reston,VA:AIAA, 2008.
[3] BERRY S A, AUSLENDER A H, DILLEY A D, et al. Hypersonic boundary-layer trip development for Hyper-X[J]. Journal of Spacecraft and Rockets, 2001, 38(6):853-864.
[4] BORG M P, SCHNEIDER S P, JULIANO T J. Effect of freestream noise on roughness induced transition for the X-51A forbody:AIAA-2008-0592[R]. Reston, VA:AIAA, 2008.
[5] BERRY S A, HORVATH T J. Discrete-roughness transition for hypersonic flight vehicles[J]. Journal of Spacecraft and Rockets, 2008, 45(2):216-227.
[6] GRONVALL J E, BISEK N J, POGGIE J. High fidelity computational study of the HIFiRE-1 boundary layer trip:AIAA-2014-0433[R]. Reston, VA:AIAA, 2014.
[7] CHOUDHARI M, LI F, EDWARDS J. Stability analysis of roughness array wake in a high-speed boundary layer:AIAA-2009-0170[R]. Reston, VA:AIAA, 2009.
[8] CHOUDHARI M, LI F, CHANG C L. Wake instabilities behind discrete roughness in high speed boundary layers:AIAA-2013-0081[R]. Reston, VA:AIAA, 2013.
[9] IYER P S, MAHESH K. High-speed boundary layer transition induced by a discrete roughness element[J]. Journal of Fluid Mechanics, 2013, 729:524-562.
[10] 赵慧勇,周瑜,倪鸿礼,等. 高超声速进气道边界层强迫转捩试验[J].实验流体力学,2012, 26(1):1-6. ZHAO H Y,ZHOU Y,NI H L,et al. Test of forced boundary-layer transition on hypersonic inlet[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1):1-6(in Chinese).
[11] 易淼荣, 赵慧勇,乐嘉陵. 强制转捩对高超声速进气道性能影响[J].航空动力学报, 2016, 31(8):1830-1837. YI M R, ZHAO H Y, LE J L. Effect of forced-transition on performance of hypersonic inlet[J].Journal of Aerospace Power, 2016, 31(8):1830-1837(in Chinese).
[12] 赵晓慧, 邓小兵,毛枚良,等. 高超声速进气道强制转捩流动的大涡模拟[J].航空学报, 2016, 37(8):2445-2453. ZHAO X H, DENG X B, MAO M L, et al. Large eddy simulation for forced transition flow at hypersonic inlet[J]. Acta Aeronautica et Astronautica Sinica,2016, 37(8):2445-2453(in Chinese).
[13] 段志伟, 肖志祥. 斜坡形粗糙单元诱导高超声速边界层转捩的参数化研究[C]//2015中国力学大会会议论文集.北京:中国力学学会,2015. DUAN Z W, XIAO Z X. Parameter research of ramp-shaped roughness-induced transition in hypersonic boundary layer[C]//Proceedings of CCTAM2015. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 2015(in Chinese).
[14] 段志伟, 肖志祥. 直接数值模拟粗糙单元触发的高超声速边界层强制转捩[C]//2015中国力学大会会议论文集. 北京:中国力学学会,2015. DUAN Z W, XIAO Z X. Direct numerical simulation of roughness-induced transition in hypersonic boundary layer[C]//Proceedings of CCTAM2015. Beijing:The Chinese Society of Theoretical and Applied Mechanics, 2015(in Chinese).
[15] DUAN Z W, XIAO Z X, FU S. Direct numerical simulation of hypersonic transition induced by isolated cylindrical roughness element[J].Science China-Physics, Mechanics & Astronomy, 2014, 57(12):2330-2345.
[16] DUAN Z W, XIAO Z X. Direct numerical simulation of geometrical parameter effects on the hypersonic ramp-induced transition:AIAA-2014-2495[R]. Reston, VA:AIAA, 2014.
[17] 朱德华, 袁湘江,沈清,等. 高超声速粗糙元诱导转捩的数值模拟及机理分析[J]. 力学学报,2015,47(3):381-388. ZHU D H, YUAN X J, SHEN Q, et al. Numerical simulation and mechanism analysis of hypersonic roughness induced transition[J]. Chinese Journal of Theoretical and Applied Mechanics,2015,47(3):381-388(in Chinese).
[18] 涂国华, 燕振国,赵晓慧,等. SA和SST湍流模型对高超声速边界层强制转捩的适应性[J]. 航空学报,2015,36(5):1471-1479. TU G H, YAN Z G, ZHAO X H, et al. SA and SST turbulence models for hypersonic forced boundary layer transition[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5):1471-1479(in Chinese).
[19] 战培国. 超燃冲压发动机前体边界层转捩风洞试验方法[J].航空科学技术,2012(6):22-25. ZHAN P G. Wind tunnel test methods for boundary layer transition on scramjet engine forebody[J]. Aeronautical Science & Technology, 2012(6):22-25(in Chinese).
[20] 张红军, 沈清. 新型高超声速进气道边界层人工转捩方法研究[J].实验流体力学,2016,30(2):75-78. ZHANG H J, SHEN Q. A new method of artificial boundary layer transition for hypersonic inlet[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(2):75-78(in Chinese).
[21] CHANG Y X, LI W C, XI Y L. Large-eddy simulation of the compressible flow past a wavy cylinder[J]. Journal of Fluid Mechanics, 2010,665:238-273.
[22] BORIS J P, GRINSTEIN F F, ORAN E S, et al. New insights into large eddy simulation[J]. Fluid Dynamics Research, 1992, 10(4):199-228.
[23] 朱志斌, 袁湘江,陈林. 适用于超声速流场计算的有限体积紧致算法[J]. 航空动力学报, 2015, 30(10):2481-2487. ZHU Z B, YUAN X J, CHEN L. Finite volume compact algorithm suited to computation of supersonic flow field[J]. Journal of Aerospace Power, 2015, 30(10):2481-2487(in Chinese).
[24] TIRTEY S C, CHAZOT O, WALPOT L. Characterization of hypersonic roughness induced transition for the expert flight experiment:AIAA-2009-7215[R]. Reston, VA:AIAA, 2009.
[25] GEORGIADIS N J, RIZZETA D P, FUREBY C. Large-eddy simulation:Current capabilities, recommended practices and future research[J]. AIAA Journal, 2010, 48(8):1772-1784.
[26] WHANG C W, ZHONG X L. Secondary Görtler instability in hypersonic boundary layers:AIAA-2001-0273[R]. Reston, VA:AIAA, 2001.
[27] LI F, CHOUDHARI M, CHANG C L, et al. Development and breakdown of Görtler vortices in high speed boundary layers:AIAA-2010-0705[R]. Reston, VA:AIAA, 2010.
[28] REN J, FU S. Secondary instabilities of Görtler vortices in high-speed boundary layer flows[J]. Journal of Fluid Mechanics, 2015, 781:388-421.
[29] WHANG C W, ZHONG X L. Nonlinear interaction of Görtler and second shear modes in hypersonic boundary layers:AIAA-2000-0536[R]. Reston, VA:AIAA, 2000.
文章导航

/