电子电气工程与控制

自适应严格收敛非奇异终端滑模制导律

  • 李晓宝 ,
  • 赵国荣 ,
  • 张友安 ,
  • 郭志强
展开
  • 1. 海军航空大学 岸防兵学院, 烟台 264001;
    2. 海军航空大学 大学参谋部, 烟台 264001;
    3. 烟台南山学院 电气与电子工程系, 烟台 265713

收稿日期: 2018-07-26

  修回日期: 2018-08-30

  网络出版日期: 2019-05-23

基金资助

国家自然科学基金(61473306)

Adaptive nonsingular terminal sliding mode guidance law with strict convergence

  • LI Xiaobao ,
  • ZHAO Guorong ,
  • ZHANG Youan ,
  • GUO Zhiqiang
Expand
  • 1. School of Coast Defence, Naval Aviation University, Yantai 264001, China;
    2. University Staff, Naval Aviation University, Yantai 264001, China;
    3. Department of Electrical and Electronic Engineering, Yantai Nanshan University, Yantai 265713, China

Received date: 2018-07-26

  Revised date: 2018-08-30

  Online published: 2019-05-23

Supported by

National Natural Science Foundation of China (61473306)

摘要

针对机动目标的末制导拦截问题,设计了一种带终端角度约束的有限时间收敛终端滑模制导律。首先,分析了现有非奇异终端滑模制导律存在的滑模面不能严格有限时间收敛的问题,进而构造了一种新型的非奇异终端滑模面。其次,设计了一种对目标机动上界的自适应估计,提出了一种自适应严格收敛非奇异终端滑模制导律的设计方法。最后,基于Lyapunov稳定性理论,证明了设计的制导律能够使得制导系统在有限时间内收敛到零,并且保证了滑模面在收敛过程中不存在非收敛因子,是严格有限时间收敛的。仿真实验验证了该制导律能够有效地拦截机动目标,同时和与现有的非奇异终端滑模制导律以及基于转换滑模面的非奇异制导律相比,拦截时间更短,终端攻击角度精度更高,导弹机动消耗的能量更少。

本文引用格式

李晓宝 , 赵国荣 , 张友安 , 郭志强 . 自适应严格收敛非奇异终端滑模制导律[J]. 航空学报, 2019 , 40(5) : 322569 -322569 . DOI: 10.7527/S1000-6893.2019.22569

Abstract

A guidance law considering finite-time convergent terminal mode sliding is developed for missiles intercepting maneuvering targets with terminal angle constraints. Firstly, since the existed nonsingular terminal sliding mode guidance laws have the drawback of non-strictly convergence on the reaching phase, a new nonsingular terminal sliding mode is designed. Secondly, an adaptive law for the upper bound estimation of the target acceleration is presented and an adaptive nonsingular terminal sliding mode guidance law with strict convergence is proposed. Finally, based on Lyapunov stability theory, the guidance system can converge to zero in finite time and the sliding surface is strictly convergent without non-convergence factors by the proposed guidance law. Simulation results indicate that with the proposed guidance law, the missile can intercept the maneuvering targets effectively. Besides, a comparison between the existed nonsingular terminal sliding mode guidance law and the nonsingular guidance law based on a switching sliding mode shows that the proposed guidance law can improve the tracking precision of the desired terminal angle and reduces the interception time as well as the actuator energy for missiles.

参考文献

[1] GUELMAN M. A qualitative study of proportional navigation[J]. IEEE Transactions on Aerospace and Electronic Systems, 1971, 7(4):637-643.
[2] RATNOO A, GHOSE D. Impact angle constrained guidance against nonstationary nonmaneuvering targets[J]. Journal of Guidance, Control, and Dynamics, 2010, 33(1):269-279.
[3] ZHOU D, SUN S, TEO K L. Guidance laws with finite time convergence[J]. Journal of Guidance, Control, and Dynamics, 2009, 32(6):1838-1846.
[4] 张友安, 黄诘, 孙阳平.带有落角约束的一般加权最优制导律[J]. 航空学报, 2014, 35(3):848-856. ZHANG Y A, HUANG J, SUN Y P. Generalized weighted optimal guidance law with impact angle constraints[J]. Acta Aeronautica et Astronautica Sincia, 2014, 35(3):848-856(in Chinese).
[5] 敦晓彪, 李君龙, 蔡婧竹. 拦截高机动目标的最优控制制导律[J]. 国防科技大学学报, 2018, 40(1):176-182. DUN X B, LI J L, CAI J Z. Optimal guidance law for intercepting high-speed maneuvering targets[J]. Journal of National University of Defense Technology, 2018, 40(1):176-182(in Chinese).
[6] YANG C D, CHEN H Y. Nonlinear H infinity robust guidance law for homing missiles[J]. Journal of Guidance, Control, and Dynamics, 1998, 21(6):882-890.
[7] 刘延芳, 齐乃明, 夏齐, 等. 基于非线性模型的大气层内拦截弹微分对策制导律[J]. 航空学报, 2011, 32(7):1171-1179. LIU Y F, QI N M, XIA Q, et al. Differential game guidance law for endoatmospheric interceptor missiles based on nonlinear model[J]. Acta Aeronautica et Astronautica Sincia, 2011, 32(7):1171-1179(in Chinese).
[8] 郭建国, 韩拓, 周军, 等. 基于基于终端角度约束的二阶滑模制导律设计[J]. 航空学报, 2017, 38(2):320208. GUO J G, HAN T, ZHOU J, et al. Second-order sliding-mode guidance law with impact angle constraint[J]. Acta Aeronautica et Astronautica Sincia, 2017, 38(2):320208(in Chinese).
[9] VENKATARAMAN S T, GULATI S. Control of nonlinear systems using terminal sliding modes[J]. Journal of Dynamic Systems, Measurement and Control, 1993, 115(3):554-560.
[10] SONG J H, SONG S M, ZHOU H B. Adaptive nonsingular fast terminal sliding mode guidance law with impact angle constraints[J]. International Journal of Control, Automation and Systems, 2016, 14(1):99-114.
[11] HE S M, LIN D. Sliding mode-based continuous guidance law with terminal angle constraint[J]. The Aeronautical Journal, 2016, 120(1229):1175-1194.
[12] HE S M, LIN D. Adaptive nonsingular sliding mode based guidance law with terminal angular constraint[J]. International Journal of Aeronautical and Space Sciences, 2014, 15(2):146-152.
[13] 熊少锋, 王卫红, 王森. 带攻击角度约束的非奇异快速终端滑模制导律[J]. 控制理论与应用, 2014, 31(3):269-278. XIONG S F, WANG W H, WANG S. Nonsingular fast terminal sliding-mode guidance with intercept angle constraint[J]. Control Theory & Applications, 2014, 31(3):269-278(in Chinese).
[14] 杨锁昌, 张宽桥, 陈鹏. 带攻击角度约束的自适应终端滑模制导律[J]. 北京航空航天大学学报, 2016, 42(8):1566-1574. YANG S C, ZHANG K Q, CHEN P. Adaptive terminal sliding mode guidance with impact angle constraint[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(8):1566-1574(in Chinese).
[15] XIONG S F, WANG W H, SONG S, et al. Extended state observer based impact angle constrained guidance law for maneuvering target interception[J]. Journal of Aerospace Engineering, 2015, 29(14):2589-2607.
[16] ZHAO J L, ZHOU J. Strictly convergent nonsingular terminal sliding mode guidance law with impact angle constraints[J]. Optik, 2016, 127:10971-10980.
[17] YU S H, YU X H, SHIRINZADEH B. Continuous finite time control for robotic manipulators with terminal sliding mode[J]. Automatica, 2005, 41(11):1957-1964.
[18] SUN S, ZHOU D, HOU W T. A guidance law with finite time convergence accounting for autopilot lag[J]. Aerospace Science and Technology, 2013, 25:132-137.
[19] ZHAO B, ZHOU J. Smooth adaptive finite time guidance law with impact angle constraints[J]. International Journal of Aerospace Engineering, 2016(4):1-19.
[20] 赵斌, 周军, 卢晓东, 等. 考虑终端角度约束的自适应积分滑模控制[J]. 控制与决策, 2017, 32(11):1966-1972. ZHAO B, ZHOU J, LU X D, et al. Adaptive integral sliding mode guidance law considering impact angle constraint[J]. Control and Decision, 2017, 32(11):1966-1972(in Chinese).
[21] ZHANG Y, TANG S J, GUO J. Adaptive terminal angle constraint interception against maneuvering targets with fast fixed-time convergence[J]. International Journal of Robust and Nonlinear Control, 2018, 28(8):2996-3014.
[22] TANG Y. Terminal sliding mode control for rigid robots[J]. Automatica, 1998, 34(1):51-56.
文章导航

/