翼身融合民机技术专栏

翼身融合布局民机非圆截面机身结构设计研究综述

  • 张永杰 ,
  • 吴莹莹 ,
  • 赵书旺 ,
  • 司江涛 ,
  • 袁昌盛
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 航空工业第一飞机设计研究院, 西安 710089;
    3. 上海飞机设计研究院, 上海 201210

收稿日期: 2019-04-02

  修回日期: 2019-04-07

  网络出版日期: 2019-05-15

基金资助

国家自然科学基金(11972301)

Review of non-circular cross-section fuselage structure design research on blended-wing-body civil aircraft

  • ZHANG Yongjie ,
  • WU Yingying ,
  • ZHAO Shuwang ,
  • SI Jiangtao ,
  • YUAN Changsheng
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. AVIC The First Aircraft Institute, Xi'an 710089, China;
    3. Shanghai Aircraft Design and Research Institute, Shanghai 201210, China

Received date: 2019-04-02

  Revised date: 2019-04-07

  Online published: 2019-05-15

Supported by

National Natural Science Foundation of China (11972301)

摘要

翼身融合布局飞机具有大升阻比、低阻力、低噪声等优点,是未来民机最具潜力的发展方向之一;但由于特殊布局所采用的非圆截面增压机身,给翼身融合布局民机结构设计带来了巨大挑战。为了降低非圆截面机身承受增压载荷时产生的高弯曲应力、提高机身结构稳定性及承载效率,翼身融合民机机身结构设计先后经历了圆柱组合式多舱室机身、双蒙皮多舱室机身、带加强支撑的盒式机身、基于拉挤杆缝合高效一体化结构(Pultruded Rod Stitched Efficient Unitized Structure,PRSEUS)的盒式中央机体等发展阶段,其中最具承载优势和可实现性的是由美国国家航空航天局NASA和波音公司共同提出的基于PRSEUS盒式中央机体结构设计方案。PRSEUS结构不仅充分利用了复合材料一体化缝合、整体共固化、低成本等制造优势,而且具有抗拉伸/压缩、多路径止损/止裂、刚度和稳定性裕度大、承载效率高、易金属修补等优异的力学特性,已被拓展应用到了翼身融合民机机翼等结构设计中。本文以非圆截面机身结构设计为重点,回顾了翼身融合民机结构设计发展历程;从整机身结构、关键部件结构、整机优化设计等方面详细阐述了翼身融合民机结构设计的研究进展与发展现状,基于国外相关技术研究发展趋势,提出了中国翼身融合民机机身结构设计研究未来需要重点关注的方向。

本文引用格式

张永杰 , 吴莹莹 , 赵书旺 , 司江涛 , 袁昌盛 . 翼身融合布局民机非圆截面机身结构设计研究综述[J]. 航空学报, 2019 , 40(9) : 623054 -623054 . DOI: 10.7527/S1000-6893.2019.23054

Abstract

With the advantages of higher lift to drag ratio, reduced drag, and lower community noise, blended-wing-body (BWB) civil aircraft is one of the most potential aircraft developing directions. But many challenges on BWB structure design are brought out as a result of applying non-circular cross-section special layout pressured airframe. Multi-bubble fuselage, double skin multi-bubble fuselage, multi-box fuselage with stiffened structure, and multi box fuselage on the basis of the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) are put forward for BWB central body design. The realizable structure design scheme with high loading efficiency is the PRSEUS-based box central body structure that is jointly designed by NASA and Boeing. PRSEUS takes full advantages of the integrated composite material stitching, co-cured technologies at low cost to obtain outstanding mechanical characteristic with tensile/compression resistance, damage arresting, large stiffness and stability redundancy, high loading efficiency, and strong metal repairing, having been developed in wing and other structure design of BWB civil aircraft. Using the non-circular cross-section fuselage structure design as a key point, this paper introduces the structure design history of BWB civil aircraft. Moreover, current techniques and development trends are explained from central body structure, central body critical parts, and full-aircraft optimization design. Then, based on the related technology research development aboard, future domestic development of BWB civil aircraft fuselage structure design is presented.

参考文献

[1] KÖNIG J, HELLSTROM T. The clean sky smart fixed wing aircraft integrated technology demonstrator:technology targets and project status[C]//Proceedings of the 27th International Congress of the Aeronautical Science. Stockholm, 2010:5101-5110.
[2] KIMMEL W. Systems analysis approach for the NASA environmentally responsible aviation project[C]//3rd AIAA Atmospheric Space Environments Conference. Reston,VA:AIAA, 2011:298-303.
[3] SCHUTTE J, JIMENEZ H, MAVRIS D. Technology assessment of NASA environmentally responsible aviation advanced vehicle concepts[C]//49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition. Reston, VA:AIAA, 2011.
[4] SUDER K. Overview of the NASA environmentallyresponsible aviation project's propulsion technology portfolio[C]//48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit. Reston, VA:AIAA, 2012
[5] BOEKELOO E, FAVALORO A, HARRIS T, et al. Integrated systems design of a cargo aircraft with environmentally responsible goals[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference. Reston, VA:AIAA, 2012.
[6] SUDER K, DELAAT J, HUGHES C, et al. NASA environmentally responsible aviation project's propulsion technology phase I overview and highlights of accomplishments[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Re Reston, VA:AIAA, 2013.
[7] LAUGHLIN T, CORMAN J, MAVRIS D. A parametric and physics-based approach to structural weight estimation of the hybrid wing body aircraft[C]//51st AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston, VA:AIAA, 2013:16076-16095.
[8] DICKEY E D, PRINCEN N, BONET J T, et al. Wind tunnel model design and fabrication of a 5.75% scale blended-wing-body twin jet configuration[C]//54th AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2016.
[9] WOOD R, BAUER X. Flying wings/flying fuselages[C]//39th Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 2011.
[10] SAEED T. Conceptual design for a laminar-flying-wing aircraft[D]. London:University of Cambridge, 2012.
[11] MARTINEZ-VAL R, SCHOEP E. Flying wing versus conventional transport airplane:the 300 seat case[C]//Proceedings 22nd ICAS Congress. Reston, VA:AIAA, 2000.
[12] MIALON B, FOL T, BONNAUD C. Aerodynamic optimization of subsonic flying wing configurations[C]//20th AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2002.
[13] HUBER K, SCHUTTE A, REIN M. Numerical investigation of the aerodynamic properties of a flyingwing configuration[C]//30th AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2012:2326-2340.
[14] CAI Y, CHAKRABORTY I, MAVRIS D N. Integrated assessment of vehicle-level performance of novel aircraft concepts and subsystem architectures in early design[C]//2018 AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2018.
[15] FLANSBURG B D. Structural loads analysis of a hybrid wing body transport[C]//58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2017.
[16] AREND D J, WOLTER J D, HIRT S M, et al. Experimental evaluation of an embedded boundary layer ingesting propulsor for highly efficient subsonic cruise aircraft[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference. Reston, VA:AIAA, 2017.
[17] GERN F H. Conceptual design and structural analysis of an open rotor hybrid wing body aircraft[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2013.
[18] MIN J B, REDDY T S, BAKHLE M A, et al. Cyclic symmetry finite element forced response analysis of a distortion tolerant fan with boundary layer ingestion[C]//2018 AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2018.
[19] CORMAN J A, WESTON N R, FRIEDLAND C I, et al. Rapid airframe design environment (RADE):A parametric, modular, and multidisciplinary framework for conceptual phase airframe design[C]//2018 AIAA Modeling and Simulation Technologies Conference. Reston, VA:AIAA, 2018.
[20] MUKHOPADHYAY V, MCMILLIN M L, OZOROSKI T A. Structural configuration analysis of advanced flight vehicle concepts with distributed hybrid-electric propulsion[C]//2018 AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2018.
[21] KASHIWAGURA Y, SHIMOYAMA K. A study on the aerodynamic efficiency and static stability of a tailless aircraft[C]//2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2018.
[22] KIM J, KWON K, ROY S, et al. Megawatt-class turboelectric distributed propulsion, power, and thermal systems for aircraft[C]//2018 AIAA Aerospace Sciences Meeting. Reston, VA:AIAA, 2018.
[23] LAUGHLIN T W, CORMAN J A, MAVRIS D N. A parametric and physics-based approach to structural weight estimation of the hybrid wing body aircraft[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, VA:AIAA, 2013.
[24] NICKOL C L. Hybrid wing body configuration scaling study[C]//50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, VA:AIAA, 2012.
[25] LIEBECK R. Blended wing body design challenges[C]//AIAA International Air and Space Symposium and Exposition:The Next 100 Years. Reston, VA:AIAA, 2003.
[26] MUKHOPADHYAY V. Hybrid wing-body pressurized fuselage modeling, analysis, and design for weight reduction[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, VA:AIAA, 2012.
[27] MUKHOPADHYAY V. Hybrid-wing-body vehicle composite fuselage analysis and case study[C]//14th AIAA Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2014.
[28] MUKHOPADHYAY V, SOBIESZCZANSKI-SOBIESKI J, KOSAKA I, et al. Analysis design and optimization of non-cylindrical fuselage for blended-wing-body (BWB) vehicle[C]//9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. Reston, VA:AIAA, 2002.
[29] MUKHOPADHYAY V, WELSTEAD J R, QUINLAN J R. Structural configuration systems analysis for advanced aircraft fuselage concepts[C]//AIAA Modeling and Simulation Technologies Conference. Reston, VA:AIAA, 2016.
[30] BISHARA M, HORST P, MADHUSOODANAN H,et al. A structural design concept for a multi-shell blended wing body with laminar flow control[J]. Energies, 2018, 11(2):383.
[31] MUKHOPADHYAY V. Blended-wing-body (BWB) fuselage structural design for weight reduction[C]//46th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, VA:AIAA, 2005.
[32] VELICKI A, YOVANOF N P, BARAJA J, et al. PRSEUS acoustic panel fabrication:NASA/CR-2011-217309[R]. Washington, D.C.:NASA, 2011.
[33] VELICKI A, THRASH P, JEGLEY D. Airframe development for the hybrid wing body aircraft[C]//47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston, VA:AIAA, 2009.
[34] JOHNSTON P H, JUAREZ P D. Ultrasonic nondestructive evaluation of pultruded rod stitched efficient unitized structure (PRSEUS) during large-scale load testing and rod push-out testing:NASA/TM-2016-218978[R]. Washington, D.C.:NASA, 2016.
[35] HORNE M R, MADARAS E I. Evaluation of acoustic Emission SHM of PRSEUS composite pressure cube tests:NASA/TM-2013-217993[R]. Washington, D.C.:NASA, 2013.
[36] JEGLEY D, VELICKI A. Status of advanced stitched unitized composite aircraft structures[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, VA:AIAA, 2013.
[37] JEGLEY D. Influence of impact damage on carbon-epoxy stiffener crippling[C]//American Society for Composites 25th Annual Technical Conference. Reston, VA:AIAA, 2010.
[38] LEE D H, HILTON H H, VELICKI A. Optimum designer materials and geometries for stitched composites[C]//Proceedings 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials (SDM) Conference. Reston, VA:AIAA, 2011.
[39] JEGLEY D C. Experimental behavior of fatigued single stiffener PRSEUS specimens:NASA/TM-2009-215955[R]. Washington, D.C.:NASA, 2009.
[40] WANG J T, GRENOBLE R W, PICKELL R D. Structural integrity testing method for prseus rod-wrap stringer design[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, VA:AIAA, 2012.
[41] JEGLEY D C, VELICKI A. Development of the prseus multi-bay pressure box for a hybrid wing body vehicle[C]//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2015.
[42] PRZEKOP A, AGATE M A. Warping of stiffened composite panels due to temperature changes in the curing process[C]//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2015.
[43] JONES D, WEAVER P M. Thermoplastic composite stiffener design with manufacturing considerations[C]//2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2018.
[44] PRZEKOP A, WU H T, SHAW P. Nonlinear finite element analysis of a composite non-cylindrical pressurized aircraft fuselage structure[C]//55th AIAA/ASME/ASCE/AHS/SC Structures, Structural Dynamics and Materials Conference. Reston, VA:AIAA, 2014.
[45] SANZ-DOUGLASS G J, VENKATARAMAN S. Parametric study of influence of stiffener variables onpost-buckling response of frame stiffened composite panels[C]//57th AIAA/ASCE/AHS/ASC Structures,Structural Dynamics and Materials Conference. Reston, VA:AIAA, 2016.
[46] LOVEJOY A E, POPLAWSKI S. Preliminary design and analysis of an in-plane prseus joint[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2013.
[47] MUKHOPADHYAY V, SOROKA M R. Composite structure modeling and analysis of advanced aircraft fuselage concepts[C]//AIAA Modeling and Simulation Technologies Conference. Reston, VA:AIAA, 2015.
[48] LOVEJOY A E, LEONE JR F A. T-cap pull-off and bending behavior for stitched structure:NASA/TM-2016-218971[R]. Washington, D.C.:NASA, 2016.
[49] LOVEJOY A, ROUSE M, LINTON K, et al. Pressure testing of a minimum gauge PRSEUS panel[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, VA:AIAA, 2011.
[50] YOVANOF N P, JEGLEY D C. Compressive behavior of frame-stiffened composite panels[C]//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, VA:AIAA, 2011.
[51] LOVEJOY A E, PRZEKOP A. Imparting barely visible impact damage to a stitched composite large-scale pressure box[C]//57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2016.
[52] JEGLEY D, ROUSE M, PRZEKOP A, et al. Testing of a stitched composite large-scale pressure box[C]//57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, VA:AIAA, 2016.
[53] LIEBECK R H, PAGE M A, RAWDON B K. Blended-wing-body subsonic commercial transport[C]//36th Aerospace Sciences Meeting & Exhibit. Reston, VA:AIAA, 1998.
[54] KAWAI R T. Benefit potential for a cost efficient dual fuel bwb[C]//51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston, VA:AIAA, 2013:7-10.
[55] REIST T A, ZINGG D W. Optimization of the aerodynamic performance of regional and wide-body-class blended wing-body aircraft[C]//33rd AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2015.
[56] RISCH T, COSENTINO G, REGAN C D, et al. X-48b flight-test progress overview[C]//47th AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 2009.
[57] VOS R, GEUSKENS F, HOOGREEF M F M. A new structural design concept for blended wing body cabins[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, VA:AIAA, 2012.
[58] CHO S H, BIL C, ADAMS R. Design and analysis of bwb military cargo centre body structure[C]//AIAA Centennial of Naval Aviation Forum "100 Years of Achievement and Progress". Reston, VA:AIAA, 2011.
[59] CHO S H, BIL C, BAYANDOR J. Structural design and analysis of a BWB military cargo transport fuselage[C]//46th AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 2008.
[60] BRADLEY K R. A sizing methodology for the conceptual design of blended-wing-body transports:NASA/CR-2004-213016[R]. Washington, D.C.:NASA, 2004.
[61] LIEBECK R. Design of the blended-wing-body subsonic transport[C]//40th AIAA Aerospace Sciences Meeting & Exhibit. Reston, VA:AIAA, 2002.
[62] YOVANOF N P, VELICKI A, LI V. Advanced structural stability analysis of a noncircular bwb-shaped vehicle[C]//50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2009.
[63] VELICKI A, JEGLEY D. Prseus structural concept development[C]//52nd Aerospace Sciences Meeting. Reston, VA:AIAA, 2014.
[64] LINTON K A, VELICKI A, HOFFMAN K, et al. Prseus panel fabrication final report:NASA/CR-2014-218149[R]. Washington, D.C.:NASA, 2014.
[65] VELICKI A. Damage arresting composites for shaped vehicles phase 1 final report:NASA/CR-2009-215932[R]. Washington, D.C.:NASA, 2009.
[66] VELICKI A, YOVANOF N, BARAJA J, et al. Damage arresting composites for shaped vehicles-phase Ⅱ final report:NASA/CR-2011-216880[R].Washington, D.C.:NASA, 2011.
[67] PRZEKOP A, JEGLEY D C, LOVEJOY A E, et al. Testing and analysis of a composite non-cylindrical aircraft fuselage structure, part I:ultimate design loads[C]//57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, VA:AIAA, 2016.
[68] PRZEKOP A, JEGLEY D C, LOVEJOY A E, et al. Testing and analysis of a composite non-cylindrical aircraft fuselage structure, Part Ⅱ:severe damage[C]//57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, VA:AIAA, 2016.
[69] LI V, LINTON K. Hybrid wing body (HWB) aircraft design and optimization using stitched composites[C]//16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, VA:AIAA, 2015.
[70] MUKHOPADHYAY V. A conceptual aerospace vehicle structural system modeling, analysis and design process[C]//48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2007.
[71] LOVEJOY A E, LEONE F A. Tension and bending testing of an integral t-cap for stitched composite airframe joints[C]//57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2016.
[72] VELICKI A, THRASH P. Advanced structural concept development using stitched composites[C]//49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, VA:AIAA, 2008.
[73] JEGLEY D C. Behavior of frame-stiffened composite panels with damage[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2013.
[74] PRZEKOP A. Repair concepts as design constraints of a stiffened composite prseus panel[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, VA:AIAA, 2012.
[75] GERN F H. Update on HCDstruct-a tool for hybrid wing body conceptual design and structural optimization[C]//15th AIAA Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2015.
[76] QUINLAN J R, GERN F H. Extension of HCD struct for transonic aeroservoelastic analysis of unconventional aircraft concepts[C]//17th AIAA Aviation Technology, Integration, and Operations Conference. Reston, VA:AIAA, 2017
[77] WU H T, SHAW P, PRZEKOP A. Analysis of a hybrid wing body center section test article[C]//54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2013.
[78] GERN F H. Finite element based HWB centerbody structural optimization and weight prediction[C]//53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, VA:AIAA, 2012.
[79] VELICKI A, JEGLEY D. Prseus development for the hybrid wing body aircraft[C]//AIAA Centennial of Naval Aviation Forum "100 Years of Achievement and Progress". Reston, VA:AIAA, 2011.
[80] JEGLEY D C, LOVEJOY A E. The use of the stags finite element code in stitched structures development[C]//55th AIAA/ASME/ASCE/AHS/SC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2014.
[81] PAPAPETROU V S, TAMIJANI A, KIM D. Preliminary wing study of general aviation aircraft with prseus panels[C]//57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2016.
[82] LEONE F A, JEGLEY D C. Compressive loading and modeling of stitched composite stiffeners[C]//57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, VA:AIAA, 2016.
[83] LI V, VELICKI A. Advanced prseus structural concept design and optimization[C]//12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference. Reston, VA:AIAA, 2008.
[84] QUINLAN J R, GERN F H. Conceptual design and structural optimization of NASA environmentally responsible aviation (era) hybrid wing body aircraft[C]//57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2016.
文章导航

/