翼身融合民机技术专栏

翼身融合布局低速验证机前缘缝翼设计

  • 钟园 ,
  • 陈勇 ,
  • 陈真利 ,
  • 谭兆光 ,
  • 吴大卫 ,
  • 司江涛
展开
  • 1. 中国商用飞机有限责任公司 上海飞机设计研究院, 上海 201210;
    2. 西北工业大学 航空学院, 西安 710072

收稿日期: 2019-03-25

  修回日期: 2019-04-03

  网络出版日期: 2019-05-15

Design of slat of blended-wing-body low speed testing aircraft

  • ZHONG Yuan ,
  • CHEN Yong ,
  • CHEN Zhenli ,
  • TAN Zhaoguang ,
  • WU Dawei ,
  • SI Jiangtao
Expand
  • 1. Shanghai Aircraft Design and Research Institute, Commercial Aircraft Corporation of China, Ltd., Shanghai 201210, China;
    2. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2019-03-25

  Revised date: 2019-04-03

  Online published: 2019-05-15

摘要

翼身融合布局是未来民机最有可能实现的非常规布局形式,其气动布局方案的验证通常采用缩比模型飞行试验的方式进行。以某翼身融合布局低速验证机为研究对象,以数值计算方法为基础,分析了其在飞行试验中存在的纵向和横向不稳定现象,提出了改善的方案——增加前缘缝翼。对此验证机进行前缘缝翼的气动布局设计、典型翼型的二维前缘缝翼设计和机翼三维前缘缝翼的气动设计,利用数值计算方法对设计结果进行纵向和横向分析。结果显示,所设计的前缘缝翼可以明显地增大验证机的失速迎角,改善其纵向力矩特性和横向特性。

本文引用格式

钟园 , 陈勇 , 陈真利 , 谭兆光 , 吴大卫 , 司江涛 . 翼身融合布局低速验证机前缘缝翼设计[J]. 航空学报, 2019 , 40(9) : 623050 -623050 . DOI: 10.7527/S1000-6893.2019.23050

Abstract

Blended-wing-body configuration could be the most promising irregular configuration in the future. The verification of its aerodynamic layout is usually carried out through a scaled model flight test. Using the numerical method, this paper analyzes the instability in both transverse and longitudinal directions during the verification flying test and proposes an improvement plan of adding slat. We designed the aerodynamic layout of the slat for the testing aircraft, and 2D and 3D slat for the typical wing-shape. Results are analyzed on both the transverse and the longitudinal directions through numerical simulation, indicating that the designed slat can significantly enlarge the stall angle of attack and improve the moment characteristics on transverse and longitudinal directions.

参考文献

[1] LIEBECK R H. Design of the blended-wing-body subsonic transport[J]. Jouranl of Aircraft, 2004, 41(1):10-25.
[2] 司江涛. 高空长航时无人机气动设计[D]. 北京:北京航空航天大学,2010:51-66. SI J T. The aerodynamic design of the high altitude long endurance UAV[D]. Beijing:Beihang University,2010:51-66(in Chinese).
[3] 凌茂芙. 民用飞机失速和深失速特性研究文集[M]. 北京:航空工业出版社, 1993:3-25. LING M F. Research anthology of stall and deep stall characteristics of civil aircraft[M]. Beijing:Aviation Industry Press, 1993:3-25(in Chinese).
[4] Γ C比施根斯. 干线飞机空气动力学和飞行力学[M]. 孙荣科, 顾诵芬, 译. 北京:航空工业出版社, 1996:129-158. BISCHGENS Γ C. Aerodynamics and flight mechanics of main aircraft[M]. SUN R K, GU S F, translated. Beijing:Aviation Industry Press, 1996:129-158(in Chinese).
[5] 方宝瑞. 飞机气动布局设计[M]. 北京:航空工业出版社, 1997:1122-1216. FANG B R. Aircraft aerodynamic layout design[M]. Beijing:Aviation Industry Press, 1997:1122-1216(in Chinese).
[6] 艾德·奥波特. 运输类飞机的空气动力设计[M]. 顾诵芬, 吴兴世, 杨新军,译. 上海:上海交通大学出版社, 2010:240-303. OBERT E. Aerodynamic design of transport aircraft[M].GU S F, WU X S, YANG X J, translated. Shanghai:Shanghai Jiao Tong University Press,2010:240-303(in Chinese).
[7] 航空航天工业部第640研究所. MD-82飞机设计分析[M]. 北京:航空工业出版社, 1990:87-130. No. 640 Institute, Ministry of Aeronautics and Astronautics. Design and analysis of MD-82 aircraft[M]. Beijing:Aviation Industry Press, 1990:87-130(in Chinese).
[8] MORRIS A. MOB a European distributed multi-disciplinary design and optimizaiton project:AIAA-2002-5444[R]. Reston, VA:AIAA, 2002.
[9] GALEA E R, FILIPPIDIS L, WANG Z, et al. Evacuation analysis of 1000+ seat blended wing body aircraft configurations:Computer simulations and full-scale evacuation experiment[M]. Boston, MA:Springer, 2011:151-161.
[10] PAULUS D, SALMON T, MOHR B, et al. Configuration selection for a 450 passenger ultra-efficient 2020 aircraft[J].Progress in Flight Dynamics, GNC, and Avionics, 2013, 6:601-618.
[11] HOWE D. Blended wing body airframe mass prediction[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2001, 215(6):319-331.
[12] BRADLEY K R. A sizing methodology for the conceptual design of blended-wing-body transports:NASA/CR-2004-213016[R]. Washington, D.C.:NASA, 2004.
[13] LAUGHLIN T, CORMAN J, MAVRIS D. A parametric and physics-based approach to structural weight estimation of the hybrid wing body aircraft:AIAA-2013-1082[R]. Reston, VA:AIAA, 2013.
[14] QIN N, VAVALLE A, MOIGNE A L, et al. Aerodynamic considerations of blended wing body aircraft[J]. Progress in Aerospace Sciences, 2004, 40(6):321-343.
[15] LI P F, ZHANG B Q, CHEN Y C, et al. Aerodynamic design methodology for blended wing body transport[J]. Chinese Journal of Aeronautics, 2012, 25(4):508-516.
[16] 朱自强, 王晓璐, 吴宗成, 等. 民机的一种新型布局形式——翼身融合体飞机[J]. 航空学报, 2008, 29(1):49-59. ZHU Z Q, WANG X L, WU Z C, et al. A new type of transport-Blend wing body aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1):49-59(in Chinese).
[17] 朱自强, 王晓璐, 吴宗成, 等. 高经济性静音中航程民机设计方法讨论[J]. 航空学报, 2008, 29(3):562-572. ZHU Z Q, WANG X L, WU Z C, et al. Discussion of design methods for silent and fuel efficient medium range civil transport[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):562-572(in Chinese).
[18] 彭亮, 薛红军, 张玉刚. 翼身融合飞机结构研究[J].科学技术与工程, 2009, 9(8):2260-2263. PENG L, XUE H J, ZHANG Y G. Research on the structure of blended-wing-body[J]. Science Technology and Engineering, 2009, 9(8):2260-2263(in Chinese).
[19] 廖慧君, 张曙光. 翼身融合布局客机的客舱设计[J].北京航空航天大学学报, 2009, 35(8):986-989. LIAO H J, ZHANG S G. Design of cabin layout for blended wing body passenger transports[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(8):986-989(in Chinese).
[20] 张帅,余雄庆. 中短程客机总体参数敏感性分析[J]. 航空学报, 2013, 34(4):809-816. ZHANG S, YU X Q. Sensitivity analysis of primary parameters in preliminary design of a short/medium-haul airliner[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):809-816(in Chinese).
[21] 张帅, 余雄庆. 客机航线性能分析的分段解析方法[J]. 飞行力学, 2012, 30(6):502-506. ZHANG S, YU X Q. Piecewise analytic model for en-route performance of airliners[J]. Flight Dynamics, 2012, 30(6):502-506(in Chinese).
文章导航

/