流体力学与飞行力学

楔形体入波浪水面数值模拟

  • 金禹彤 ,
  • 陈吉昌 ,
  • 卢昱锦 ,
  • 肖天航 ,
  • 童明波
展开
  • 南京航空航天大学 航空学院 飞行器先进设计技术国防重点学科实验室, 南京 210016

收稿日期: 2018-12-13

  修回日期: 2019-02-21

  网络出版日期: 2019-05-15

基金资助

南京航空航天大学研究生创新基地(实验室)开放基金(kfjj20180104);国防预研项目;江苏高校优势学科建设工程资助项目

Numerical simulation of wedge impacting on wavy water

  • JIN Yutong ,
  • CHEN Jichang ,
  • LU Yujin ,
  • XIAO Tianhang ,
  • TONG Mingbo
Expand
  • National Defense Key Laboratory of Aircraft Advanced Design Technology, College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2018-12-13

  Revised date: 2019-02-21

  Online published: 2019-05-15

Supported by

The Fundamental Research Funds for the Nanjing University of Aeronautics and Astronautics(kfjj20180104); National Defense Pre-research Foundation; A Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要

数值模拟分析楔形体入波浪水面流体力学现象和运动姿态变化历程,为水上飞机在波浪水面起降提供技术和理论支持。基于有限体积法求解非定常雷诺平均Navier-Stokes(URANS)方程和SST k-ω湍流模型,结合整体动网格法的速度入口造波方法、阻尼消波法和流体体积(VOF)液面捕捉技术构造数值波浪水池,耦合三/六自由度模型,实现楔形体入线性规则波和不规则波的数值模拟。在楔形体入静水面算例验证的基础上,详细研究二维楔形体在线性规则波波峰、波谷、平衡位置-上行速度和下行速度处入水过程的受力特性和运动姿态变化。结果表明:速度入口造波方法的波浪数值解与理论解析解较吻合,偏差为1%;在二维楔形体入规则波过程中,楔形体所受垂向力和垂向速度变化趋势相同,对横向位移影响较小,其数值变化少于0.01;在平衡位置入水过程中,模型的滚转角和横向速度变化明显,其数值变化约为波峰、波谷位置处的8倍和10倍。分析原因:平衡位置处波浪内流速度变化较快,模型所受波浪力冲量较大,且楔形体两侧斜边与波浪的相互作用力也参与到模型的运动中。数值模拟二维楔形体在线性不规则波5个随机时间点入水及三维楔形体在波峰、平衡位置-上行速度处入水过程,其变化规律及形成原因与入规则波相似。

本文引用格式

金禹彤 , 陈吉昌 , 卢昱锦 , 肖天航 , 童明波 . 楔形体入波浪水面数值模拟[J]. 航空学报, 2019 , 40(10) : 122854 -122854 . DOI: 10.7527/S1000-6893.2019.22854

Abstract

The characteristics of force and change histories of motion during wedge impacting on wavy water are examined and simulated numerically in order to provide technical and theoretical support for seaplane ditching on wave. Solutions are generated with the finite-volume method based on Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations and the SST k-ω turbulence model. A velocity-inlet boundary wave maker and a momentum absorbing zone combination with Volume of Fluid (VOF) model are employed to generate waves. The global moving mesh method and the methods above coupled with three/six degree of freedom model adapts to simulate the free falling wedge on linear regular and irregular waves. The characteristics of force and the changes of motion during two-dimensional (2D) wedge entering on wave at crest, trough, balance positions (up-speed and down-speed) are studied particularly based on the validation of numerical examples. The results show that the numerical wave simulation results show good agreement with analytical wave with a deviation of 1%. In the case of 2D wedge impacting on regular wave, the vertical velocity and force have the same trend at different positions of regular wave. There is a little effect on displacement in the x-direction and its value changes less than 0.01. The roll angle and lateral velocity of the wedge change significantly at the balance positions of the linear regular wave, the values are eight and ten times at the crest and trough respectively. This is due to the faster change of velocity and hydrodynamic at balance positions of wave than crest and trough. Another interesting reason is the different relative force of the oblique sides of wedge and wave, which participated in the process of wedge impacting on wave and effected its change. Furthermore, several numerical cases of 2D wedge impacting on irregular wave at five random time points and three-dimensional(3D) wedge entering on regular wave at crest and balance position(up-speed) are presented and investigated, the changes and causes of them are similar to 2D wedge impacting on regular wave at different positions.

参考文献

[1] PARKINSON J B. NACA model investigations of seaplanes in waves:NACA TN 3419[R]. Washington D.C.:NACA, 1955.
[2] 褚林塘, 吴彬, 王明振,等. 地效飞机着水冲击载荷理论计算与试验[J]. 航空学报, 2016, 37(12):3698-3705. CHU L T, WU B, WANG M Z, et al. Theoretical calculation and experiment on impact loads of landing of wing-in-ground aircraft on water surface[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(12):3698-3705(in Chinese).
[3] RODDIER D, FINNIGAN T, LIAPIS S. Influence of the Reynolds number on spar vortex induced motions (VIM):multiple scale model test comparisons[C]//ASME 200928th International Conference on Ocean, Offshore and Arctic Engineering. New York:ASME, 2009:797-806.
[4] WRIGHT E A. New research resources at the david taylor model basin[R]. Washington, D.C.:David Taylor Model Basin, 1959.
[5] SOHNEIDER W. New research resources at the david taylor model basin[R]. New York:ASME, 1998.
[6] CARRICA P M, WILSON R V, NOACK R W, et al. Ship motions using single-phase level set with dynamic overset grids[J]. Computers & Fluids, 2007, 36(9):1415-1433.
[7] PAKOZDI C, KENDON T E, STANSBERG C T. Breaking wave impact on a platform column:An introductory CFD study[C]//ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering. New York:ASME, 2011:645-654.
[8] BRORSEN M, LARSEN J. Source generation of nonlinear gravity waves with the boundary integral equation method[J]. Coastal Engineering, 1987, 11(2):93-113.
[9] 李胜忠. 基于FLUENT的二维数值波浪水槽研究[D].哈尔滨:哈尔滨工业大学, 2006. LI S Z. Study on 2-d numerical wave tank based on the software fluent[D]. Harbin:Harbin Institute of Technology, 2006(in Chinese).
[10] 储慧林. 鱼雷在波浪中入水的数值模拟[D]. 镇江:江苏科技大学, 2014. CHU H L. Numerical simulation of torpedo entering water in wave[D]. Zhenjiang:Jiangsu University of Science and Technology, 2014(in Chinese).
[11] 王文华, 王言英. 圆柱在波浪中入水的数值模拟[J]. 上海交通大学学报, 2010, 44(10):1393-1399. WANG W H, WANG Y Y. Numerical study on cylinder entering water in wave[J]. Journal of Shanghai Jiaotong University, 2010, 44(10):1393-1399(in Chinese).
[12] 王平, 袁帅, 张宁川,等. 楔形体在波浪中自由入水的数值模拟[J]. 海洋工程, 2017, 35(5):42-50. WANG P, YUAN S, ZHANG N C. Numerical study of the free water-entry wedge in wave[J]. The Ocean Engineering, 2017, 35(5):42-50(in Chinese).
[13] LONGUET HIGGINS M S, COKELET E D. The deformation of steep surface waves on water-I. A numerical method of computation[J]. Proceedings of the Royal Society of London, Series, A, Mathematical and Physical Sciences, 1976, 350(1660):1-26.
[14] BOO S Y. Linear and nonlinear irregular waves and forces in a numerical wave tank[J]. Ocean Engineering, 2002, 29(5):475-493.
[15] SU Y,ZHAO J, CHEN Q, et al. Numerical simulation of the planning vessel in regular waves[J]. Journal of Ship Mechanics, 2013, 17(6):583-591.
[16] CAPONNETTO M, SÖDING H, AICUETA R. Motion simulations for planning boats in waves[J]. Ship Technology Research, 2003, 50(4):182-198.
[17] 陈宇翔, 郜冶, 刘乾坤. 水平圆柱出水数值模拟[J].华中科技大学学报(自然科学版), 2012, 40(7):124-127. CHEN Y X, GAO Y, LIU Q K. Numerical simulation of water-exit of horizontal circular cylinder[J]. Journal of Huazhong University of Science and Technology(Natural Science Edition), 2012, 40(7):124-127(in Chinese).
[18] 陈宇翔, 郜冶, 刘乾坤. 应用VOF方法的水平圆柱入水数值模拟[J].哈尔滨工程大学学报,2011, 32(11):1439-1442. CHEN Y X, GAO Y, LIU Q K. Numerical simulation of water-entry in a horizontal circular cylinder using the volume of fluid (VOF) method[J]. Journal of Harbin Engineering University, 2011, 32(11):1439-1442(in Chinese).
[19] ABRAHAM J, GORMAN J, RESEGHETTI F, et al. Modeling and numerical simulation of the forces acting on a sphere during early water entry[J]. Ocean Engineering, 2014, 76:1-9.
[20] WICK A, ZINK G, RUSZKOWSKI R, et al. Computational simulation of an unmanned air vehicle impacting water[C]//45th AIAA Aerospace Sciences Meeting and Exhibit. Reston, VA:AIAA, 2007:70.
[21] GUO B, LIU P, QU Q, et al. Effect of pitch angle on initial stage of a transport airplane ditching[J]. Chinese Journal of Aeronautics, 2013, 26(1):17-26.
[22] QU Q, HU M, GUO H, et al. Study of ditching characteristics of transport aircraft by global moving mesh method[J]. Journal of Aircraft, 2015, 52(5):1-9.
[23] 卢昱锦, 肖天航, 李正洲. 高速平板着水数值模拟[J]. 航空学报, 2017, 38(S1):6-14. LU Y J, XIAO T H, LI Z Z. Numerical simulation of high speed plate ditching[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1):6-14(in Chinese).
[24] LIN P, LIU P. Internal wave-maker for Navier-Stokes equations model[J]. Journal of Waterway Port Coastal and Ocean Engineering, 1999, 125(4):207-214.
[25] ELHANAFI A, FLEMING A, MACFARLANE G, et al. Effect of RANS-based turbulence models on nonlinear wave generation in a two phase numerical wave tank[J]. Progress in Computational Fluid Dynamics, 2017, 17(3):141-158.
[26] OGER G, DORING M, ALESSANDRINI B. Two-dimensional SPH simulations of wedge water entries[J]. Journal of Computational Physics, 2006, 213(2):803-822.
[27] ZHAO R, FALTINSEN O. Water entry of two-dimensional bodies[J]. Journal of Fluid Mechanics, 1993, 246:593-612.
[28] ZHAO R, FALTINSEN O, AARSNES J. Water entry of arbitrary two-dimensional sections with and without flow separation[C]//Proceedings of the 21st Symposium on Naval Hydrodynamics, 1996.
[29] MEI X, LIU Y, YUE A. On the water impact of general two-dimensional sections[J]. Applied Ocean Research, 1999, 21(1):1-15.
[30] 秦绪国, 刘沛清, 屈秋林. 翼型波浪水面巡航地面效应数值模拟[J]. 北京航空航天大学学报, 2011, 37(3):295-299. QIN X G, LIU P Q, QU Q L. Numerical simulation on aerodynamics of airfoil flying over wavy water surface[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(3):295-299(in Chinese).
文章导航

/