翼身融合民机技术专栏

翼身融合民机扰流板增升技术

  • 王刚 ,
  • 张明辉 ,
  • 毛俊 ,
  • 桑为民 ,
  • 陈真利 ,
  • 王龙 ,
  • 张彬乾
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 中国商用飞机有限责任公司 上海飞机设计研究院, 上海 201210;
    3. 航空工业 惠阳航空螺旋桨有限责任公司, 保定 071051

收稿日期: 2019-03-25

  修回日期: 2019-04-03

  网络出版日期: 2019-05-10

基金资助

中央高校基本科研业务费专项资金(3102019JC009,G2016KY0002)

High-lift technology for spoiler on blended-wing-body civil aircraft

  • WANG Gang ,
  • ZHANG Minghui ,
  • MAO Jun ,
  • SANG Weimin ,
  • CHEN Zhenli ,
  • WANG Long ,
  • ZHANG Binqian
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Shanghai Aircraft Design and Research Institute, Commercial Aircraft Corporation of China, Ltd., Shanghai 201210, China;
    3. AVIC Huiyang Aviation Propeller Co., Ltd., Baoding 071051, China

Received date: 2019-03-25

  Revised date: 2019-04-03

  Online published: 2019-05-10

Supported by

The Fundamental Research Funds for the Central Universities (3102019JC009, G2016KY0002)

摘要

为满足翼身融合(BWB)民机增升装置简单、高效的设计需求,以配置三段高升力系统的BWB民机增升构型为对象,采用数值模拟方法研究了下偏扰流板技术的增升机理与设计原则。研究结果表明,设计合理的下偏扰流板能够将BWB民机增升构型设计点升力系数提高约20%;其增升机理集中体现为对缝道射流、流场能量分布、环量及其分布的控制作用。其应用于BWB民机增升装置的设计原则为:扰流板偏转后上表面延长线应与襟翼上表面相切,控制缝道宽度使增升装置环量增大并前移,控制扰流板偏度避免扰流板内段过早分离。研究还表明,受增升装置三维效应影响,扰流板下偏翼型上洗作用越强,则相应三维增升装置升力损失越大,并呈近似线性变化规律。下偏扰流板改造简单,且有助于简化襟翼作动机构,是一种很有潜力的增升技术,具有深入研究的价值和良好的应用前景。

本文引用格式

王刚 , 张明辉 , 毛俊 , 桑为民 , 陈真利 , 王龙 , 张彬乾 . 翼身融合民机扰流板增升技术[J]. 航空学报, 2019 , 40(9) : 623045 -623045 . DOI: 10.7527/S1000-6893.2019.23045

Abstract

To meet the design requirements for the high-lift device of Blended-Wing-Body (BWB) civil aircraft with simplicity and high efficiency, the BWB high-lift configuration with three-element high-lift device is numerically simulated to study the mechanism of lift-enhancement and design principles of the drooped spoiler technology. The research results show that the reasonable design of the drooped spoiler can increase the design point lift coefficient of the BWB high-lift configuration by almost 20%. The lift-enhancement mechanism of the drooped spoiler is mainly concentrated on the control of the slot-jet, the energy distribution of the flow field, the circulation, and its distribution. The design principles of the drooped spoiler for BWB civil aircraft are as follows:the deflection of the drooped spoiler should be tangent to the upper surface of the flap; the gap width should be narrowed to enhance the circulation and move it forward; and the deflection of the internal spoiler should be limited to avoid premature separation. The study also shows that, with the influence of the three-dimensional effect of the high-lift device, the stronger the up-washing effect of spoiler deflected airfoils, the greater the lift loss of the three-dimensional high-lift device, showing an almost linear pattern of variation. Since it is simple to reconstruct and helps to simplify the flap operating mechanism, the drooped spoiler is a potential high-lift improvement technology, demonstrating in-depth research values and good application prospects.

参考文献

[1] LIN J C, MELTON L P, VIKEN S A, et al. High lift common research model for wind tunnel testing:An active flow control perspective:AIAA-2017-0319[R]. Reston, VA:AIAA, 2017.
[2] GARNER P, MEREDITH P, STONER R. Areas for future CFD development as illustrated by transport aircraft applications:AIAA-1991-1527[R]. Reston, VA:AIAA, 1991.
[3] 陈迎春, 张美红, 张淼, 等. 大型客机气动设计综述[J]. 航空学报, 2019, 40(1):522759. CHEN Y C, ZHANG M H, ZHANG M, et al. Review of large civil aircraft aerodynamic design[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(1):522759(in Chinese).
[4] CHU H B, ZHANG B Q, CHEN Y C, et al. Investigation of micro vortex generators on controlling flow separation over SCCH high-lift configuration[J]. Science China:Technological Sciences, 2012, 55(7):1943-1953.
[5] NICKOL C, MCCULLERS L. Hybrid wing body configuration system studies:AIAA-2009-0931[R]. Reston, VA:AIAA, 2009.
[6] OKONKWO P, SMITH H. Review of evolving trends in blended wing body aircraft design[J]. Progress in Aerospace Sciences, 2016, 82(3):1-23.
[7] LEBOFSKY S, TING E, NGUYEN N T, et al. Aeroelastic modeling and drag optimization of flexible wing aircraft with variable camber continuous trailing edge flap:AIAA-2014-2443[R]. Reston, VA:AIAA, 2014.
[8] 褚胡冰, 张彬乾, 陈迎春, 等. 微型后缘装置增升效率及几何参数影响研究[J]. 航空学报, 2012, 33(3):381-389. CHU H B, ZHANG B Q, CHEN Y C, et al. Investigation on Mini-TED efficiency and impact of its geometrical parameters[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(3):381-389(in Chinese).
[9] 褚胡冰, 陈迎春, 张彬乾, 等. 增升装置微型涡流发生器数值模拟方法研究[J]. 航空学报, 2012, 33(1):11-21. CHU H B, CHEN Y C, ZHANG B Q, et al. Investigation of numerical simulation technique for micro vortex generators applied to high lift system[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(1):11-21(in Chinese).
[10] 陈迎春, 张攀峰, 王晋军. 扰流片分离流动特性的数值研究[J]. 北京航空航天大学学报, 2004, 30(12):1221-1224. CHEN Y C, ZHANG P F, WANG J J. Numerical simulation of separation flow around flaps with varied gap size[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(12):1221-1224(in Chinese).
[11] 孙静, 杨广珺, 张彬乾. 带扰流板翼型的流场数值模拟[J]. 航空计算技术, 2006, 36(6):62-65. SUN J, YANG G J, ZHANG B Q. Numerical simulation of the flowfield of an airfoil with spoiler[J]. Aeronautical Computing Technique, 2006, 36(6):62-65(in Chinese).
[12] KANJERE K, ZHANG X, HU Z, et al. Aeroacoustic investigation of deployed spoiler during steep approach landing:AIAA-2010-3992[R]. Reston, VA:AIAA, 2010.
[13] JUNG U, BRIETSAMTER C. Aerodynamic wake investigations of high-lift transport aircraft with deployed spoilers[C]//27th International Congress of the Aeronautical Sciences (ICAS), 2010:19-24.
[14] BREITSAMTER C. Wake vortex characteristics of transport aircraft[J]. Progress in Aerospace Sciences, 2011, 47(2):89-134.
[15] ELSAYED O A, OMAR A A, ASRAR W, et al. Effect of differential spoiler settings (DSS) on the wake vortices of a wing at high-lift-configuration (HLC)[J]. Aerospace Science and Technology, 2011, 15(7):555-566.
[16] SCHOLZ P, MAHMOOD S, CASPER M, et al. Design of active flow control at a drooped spoiler configuration:AIAA-2013-2518[R]. Reston, VA:AIAA, 2013.
[17] 徐琳, 田云, 刘沛清, 等. 大型飞机后缘铰链襟翼与扰流板下偏联合主动控制的二维绕流数值研究[J]. 民用飞机设计与研究, 2014, 4(1):52-57. XU L, TIAN Y, LIU P Q, et al. 2D numerical study based on active control of trailing edge high lift devices with downward deflection of spoiler for large aircraft[J]. Civil Aircraft Design & Research, 2014, 4(1):52-57(in Chinese).
[18] WANG X L, WANG F X, LI Y L. Aerodynamic characteristics of high-lift devices with downward deflection of spoiler[J]. Journal of Aircraft, 2011, 48(2):730-735.
[19] 刘江, 郑隆乾, 白俊强, 等. 扰流板下偏对增升装置气动性能的影响及流动机理研究[J]. 西北工业大学学报, 2017, 35(5):813-820. LIU J, ZHENG L Q, BAI J Q, et al. Study on flow mechanism and aerodynamic characteristic of high-lift devices with drooped spoiler[J]. Journal of Northwestern Polytechnical University, 2017, 35(5):813-820(in Chinese).
[20] WANG W, LIU P, TIAN Y, et al. Numerical study of the aerodynamic characteristics of high-lift droop nose with the deflection of fowler flap and spoiler[J]. Aerospace Science and Technology, 2016, 48(1):75-85.
[21] CASPER M, SCHOLZ P. Active flow control on a two element high-lift airfoil with drooped spoiler:AIAA-2014-2147[R]. Reston, VA:AIAA, 2014.
[22] SMITH A M O. High-lift aerodynamics[J]. Journal of Aircraft, 1975, 12(6):501-530.
[23] 褚胡冰, 张彬乾, 陈迎春, 等. 微型涡流发生器控制SCCH增升构型流动分离研究[J]. 中国科学:技术科学, 2012, 42(8):945-956. CHU H B, ZHANG B Q, CHEN Y C, et al. Investigation of micro vortex generators on controlling flow separation over SCCH high-lift configuration[J]. Science China:Technological Sciences, 2012, 42(8):945-956(in Chinese).
[24] 方宝瑞. 飞机气动布局设计[M]. 北京:航空工业出版社, 1997:518. FANG B R. Aircraft aerodynamic layout design[M]. Beijing:Aviation Industry Press, 1997:518(in Chinese).
[25] 飞机设计手册总编委会.飞机设计手册(第6册):气动设计[M]. 北京:航空工业出版社, 2002:65-66, 69, 71-72. Aircraft Design Manual General Editorial Board. Aircraft design manual 6:Aerodynamic design[M]. Beijing:Aviation Industry Press, 2002:65-66, 69, 71-72(in Chinese).
文章导航

/