配平空气系统(TAS)作为民用飞机空调系统(ACS)中的子系统之一,其本质是舱室内温度调节的高温气体支路。该系统的动态特性较大地影响着下游乃至舱室内空气参数的变化,不利于下游参数的稳定。因此需要依据系统固有的动态特性,通过设计系统的控制规律,达到稳定下游空气参数的目的。随着系统方案及部件的更新换代,民机配平空气系统的压力控制方式逐步由机械气动式压力调节活门转变为电动式压力调节活门辅以压力传感器的方式。这种方式要求对配平空气系统的动态特性进行快速、准确的仿真,并能够依据仿真结果进行压力控制律设计。本文提出小偏差化的线性化处理方法作为动态特性建模仿真的理论推导依据,对采用电动式压力调节活门和压力传感器方案的典型民机配平空气系统建立高效的动态仿真模型。经校验,该方法结果准确。此外,还根据动态特性分析结果给出电动式压力调节活门的控制律设计实例,有效实现了良好的压力调节效果。根据设计流程提出了配平空气系统的压力控制需求,为民机空调系统的动态仿真建模方法提供指导思路。
As one of the subsystems of Air Conditioning System (ACS) in civil aircraft, Trim Air System (TAS) is essentially the hot air branch to regulate cabin temperature. While the dynamic characteristics of TAS greatly affect the variation of downstream and cabin air parameters, it goes against with the stability of downstream parameters. Therefore, the system control law should be designed based on the inherent dynamic characteristics of the system, so as to stabilize the downstream parameters. With the updating of the system architecture and system components, the pressure is regulated by electrically operated Trim Air Pressure Regulating Valve (TAPRV) and Trim Air Pressure Sensor (TAPS) instead of the traditional mechanical pneumatic TAPRV. The dynamic characteristics of TAS is required to be simulated efficiently and accurately. In this paper, a small deviation linearization method is provided for theoretical derivation, and an efficient dynamic simulation model for typical electrically operated TAS is established. The method is validated to be accurate. Then the control law of electrically TAPRV is designed as an example, achieving good pressure regulating effect. Based on the design flow, this research provides TAS pressure control requirements, and provides guidance for the dynamic modeling and simulation of ACS.
[1] 朱春玲. 飞行器环境控制与安全救生[M]. 北京:北京航空航天大学出版社, 2006:322-326. ZHU C L. Air vehicle environmental control and safety lifesaving[M]. Beijing:Beihang University Press, 2006:322-326(in Chinese).
[2] TERESA J L, ISABEL P G. A thermoeconomic analysis of a commercial aircraft environmental control system[J]. Applied Thermal Engineering, 2005, 25(2-3):309-325.
[3] ZHAO H L, HOU Y, ZHU Y F, et al. Experimental study on the performance of an aircraft environmental control system[J]. Applied Thermal Engineering, 2009, 29(16):3284-3288.
[4] 陈元先. 旅客机环境控制系统的发展[J]. 航空学报, 1999, 20(S1):8-10. CHEN Y X. Evolution of the environment control system for commercial aircraft[J]. Acta Aeronautica et Astronautica Sinica, 1999, 20(S1):8-10(in Chinese).
[5] 高铭. 民用飞机配平系统管路出口流场研究[J]. 科技创新导报, 2017, 11:19-22. GAO M. Study on flow field of pipeline outlet of civil aircraft trim air system[J]. Science and Technology Innovation Herald, 2017, 11:19-22(in Chinese).
[6] 王荣, 唐敏杰. 空调系统热空气配平活门疑难故障分析[J]. 民航科技, 2010, 3(139):106-108. WANG R, TANG M J. Difficult fault analysis of trim air pressure regulation valve in air conditioning system[J]. Civil Aviation Science & Technology, 2010, 3(139):106-108(in Chinese).
[7] DECHOW M, NURCOMBE C A H. Aircraft environmental control systems[M]//Air quality in airplane cabins and similar enclosed spaces. Berlin Heidelberg:Springer, 2005:3-24.
[8] TU Y, LIN G P. Dynamic simulation of aircraft environmental control system based on flowmaster[J] Journal of Aircraft, 2011, 48(6):2031-2041.
[9] 郭志刚. 飞机气动活门类附件的特点[C]//2008中国航空维修论坛论文集, 2008:153-159. GUO Z G. Characteristics of pneumatic valves on aircraft[C]//2008 China Aviation Maintenance Conference Proceeding, 2008:153-159(in Chinese).
[10] KNIGGE H, WORNER M, SCHMITZ G. Simulation with modelica for a dynamic representation of an aircraft cabin climate for comfort improved climate control[C]//25th International Congress of the Aeronautical Sciences, 2006:1-7.
[11] LINARES D P. Modeling and simulation of an aircraft environmental control system[D]. Montréal:école Polytechnique De Montréal, 2016:10-25.
[12] 杨绍曾, 王浚. 飞机座舱温度控制系统动态特性研究[J]. 航空学报, 1983, 4(4):78-85. YANG S Z, WANG J. Study on dynamic characteristics of cockpit temperature control system[J]. Acta Aeronautica et Astronautica Sinica, 1983, 4(4):78-85(in Chinese).
[13] PéREZ-GRANDE I, LEO T J. Optimization of a commercial aircraft environmental control system[J]. Applied Thermal Engineering, 2002, 22(17):1885-1904.
[14] 任明波, 王娟, 李荣军, 等. 大型飞机座舱温度控制系统控制律设计[J]. 航空学报, 2017, 38(S1):721501. REN M B, WANG J, LI R J, et al. Control law design for temperature control system of large-scale aircraft cabin[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(S1):721501(in Chinese).
[15] 何君, 赵竞全, 袁修干. 飞机环境控制系统的模糊控制研究[J]. 北京航空航天大学学报, 2004, 30(12):1511-1514. HE J, ZHAO J Q, YUAN X G. Fuzzy control of aircraft environmental control system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(12):1511-1514(in Chinese).
[16] 屠毅, 林贵平. 大型飞机座舱温度控制系统仿真研究[J]. 航空学报, 2011, 32(1):49-57. TU Y, LIN G P. Simulation of the large scale aircraft cabin temperature control system[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(1):49-57(in Chinese).
[17] 姚洪伟, 王浚. 歼击机环境控制系统控制性能分析[J]. 中国工程科学, 2006, 8(6):44-47. YAO H W, WANG J. Analysis of control performance of ECS in fighter plane[J]. Engineering Science, 2006, 8(6):44-47(in Chinese).
[18] 沈维道, 童均耕. 工程热力学[M]. 北京:高等教育出版社, 2007:246-252. SHEN W D, TONG J G. Engineering thermodynamic[M]. Beijing:High Education Press, 2007:246-252(in Chinese).
[19] 胡寿松. 自动控制原理[M]. 6版. 北京:科学出版社, 2018:21-29. HU S S. Principle of automatic control[M]. 6th ed. Beijing:China Science Publishing Press, 2018:21-29(in Chinese).
[20] 王建辉, 顾树生. 自动控制原理[M]. 2版. 北京:清华大学出版社, 2017:41-57. WANG J H, GU S S. Principle of automatic control[M]. 2nd ed. Beijing:Tsinghua University Press, 2017:41-57(in Chinese).