[1] EWINS D J. Control of vibration and resonance in aero engines and rotating machinery-An overview[J]. International Journal of Pressure Vessels & Piping, 2010, 87(9):504-510.
[2] RUHL R L, BOOKER J F. A finite element model for distributed parameter turborotor systems[J]. Journal of Engineering for Industry Trans Asme, 1972, 94(1):126-132.
[3] NIKOLAJSEN J L, HOLMES R. The vibration of a multi-bearing rotor[J]. Journal of Sound & Vibration, 1980, 72(3):343-350.
[4] DE CASTRO H, CAVALCA K, NORDMANN R. Whirl and whip instabilities in rotor-bearing system considering a nonlinear force model[J]. Journal of Sound & Vibration, 2008, 317(1):273-293.
[5] 王海涛. 某型航空发动机整机振动特性分析[D]. 南京:南京航空航天大学, 2010. WANG H T. Research on whole body vibration of aero-engine[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2010(in Chinese).
[6] 陈予恕, 张华彪. 航空发动机整机动力学研究进展与展望[J]. 航空学报, 2011, 32(8):1371-1391. CHEN Y S, ZHANG H B. Review and prospect on the research of dynamics of complete aero-engine systems[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8):1371-1391(in Chinese).
[7] 钟一谔, 何衍宗, 王正, 等. 转子动力学[M]. 北京:清华大学出版社, 1987:196. ZHONG Y E, HE Y Z, WANG Z, et al. Rotodynamic[M]. Beijing:Tsinghua University Publication, 1987:196(in Chinese).
[8] CHEN G. Vibration modelling and verifications for whole aero-engine[J]. Journal of Sound & Vibration, 2015, 349:163-176.
[9] MOKHTAR M A, DARPE A K, GUPTA K. Analysis of stator vibration response for the diagnosis of rub in a coupled rotor-stator system[J]. International Journal of Mechanical Sciences, 2018, 144:392-406.
[10] WANG H F, CHEN G, SONG P P. Simulation analysis of casing vibration response and its verification under blade-casing rubbing fault[J]. Journal of Vibration & Acoustics, 2016, 138(3):1-14.
[11] SHANG Z, JIANG J, HONG L. The global responses characteristics of a rotor/stator rubbing system with dry friction effects[J]. Journal of Sound & Vibration, 2011, 330(10):2150-2160.
[12] MA Y Q, ZHAO Q J, ZHANG K, et al. Investigation on the vibration energy transmission mechanism of casing with different loading and boundary conditions based on structural intensity method[C]//The 9th Asian Joint Conference on Propulsion and Power, AJCPP, 2018.
[13] NOISEUX D U. Measurement of power flow in uniform beams and plates[J]. Journal of the Acoustical Society of America, 1970, 47(1):238-247.
[14] PAVIC G. Measurement of structure borne wave intensity, Part I:Formulation of the methods[J]. Journal of Sound & Vibration, 1976, 49(2):221-230.
[15] WILLIAMS E G. Structural intensity in thin cylindrical shells[J]. Journal of the Acoustical Society of America, 1991, 89:1615-1622.
[16] KEUSTERMANS W, PIRES F, DE GREEF D, et al. Digital stroboscopic holographic interferometry for power flow measurements in acoustically driven membranes[C]//International Aivela Conference on Vibration Measurements by Laser & Noncontact Techniques:Advances & Applications. Melville, NY:AIP Publishing LLC, 2016.
[17] LIU C C, LI F M, TANG L, et al. Vibration control of the finite L-shaped beam structures based on the active and reactive power flow[J]. Science in China Series G (Physics, Mechanics and Astronomy), 2011, 54(2):310-319.
[18] SILVA O M, NEVES M M, JORDAN R, et al. An FEM-based method to evaluate and optimize vibration power flow through a beam-to-plate connection[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39(2):413-426.
[19] CHEN T, YE Y M, LI Y Q. Investigations on structural intensity in nanoplates with thermal load[J]. Physica E:Low-dimensional Systems and Nanostructures, 2018, 103:1-9.
[20] PETRONE G, VENDITTIS M D, ROSA S D, et al. Numerical and experimental investigations on structural intensity in plates[J]. Composite Structures, 2016, 140:94-105.
[21] KWON H W, HONG S Y, SONG J H. Vibrational energy flow analysis of coupled cylindrical thin shell structures[J]. Journal of Mechanical Science & Technology, 2016, 30(9):4049-4062.
[22] CHEN Y H, JIN G Y, LIU Z G. Vibrational energy flow analysis of coupled cylindrical shell-plate structure with general boundary and coupling conditions[J]. Journal of Mechanical Engineering Science, 2014, 229(10):207-218.
[23] CHO D S, CHOI D S, KIM T M, et al. Structural intensity analysis of stepped thickness rectangular plates utilizing the finite element method[J]. Thin-walled Structures, 2016, 109:1-12.
[24] CHO D S, CHOI T M, KIM J H, et al. Dominant components of vibrational energy flow in stiffened panels analysed by the structural intensity technique[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 10:583-595.
[25] PIRES F, MUYSHONDT P G G, KEUSTEREMANS W, et al. Structural intensity analysis of flat plates based on digital stroboscopic holography measurements[J]. Journal of Sound and Vibration, 2018, 428:168-178.
[26] FRESCHI A A, PEREIRA A K, AHMIDA K M, et al. Analyzing the total structural intensity in beams using a homodyne laser Doppler vibrometer[J]. Shock & Vibration, 2000, 7:299-308.
[27] ROMANO A J, ABRAHAM P B, WILLIAMS E G. A poynting vector formulation for thin shells and plates, and its application to structural intensity analysis and source localization. Part I:Theory[J]. The Journal of the Acoustical Society of America, 1998, 87(3):1166-1175.
[28] 马英群, 张锴, 王云飞, 等. 不平衡激励作用下周向加肋机匣振动能量传递机理[J]. 航空动力学报, 2018, 33(11):2583-2592. MA Y Q, ZHANG K, WANG Y F, et al. Vibration energy transmitting mechanism of ring-stiffened casing excited by rotor unbalance[J]. Journal of Aerospace Power, 2018, 33(11):2583-2592(in Chinese).
[29] GAVRIC L, PAVIC G. A finite element method for computation of structural intensity by the normal mode approach[J]. Journal of Sound & Vibration, 1993, 164(1):29-43.
[30] HONG J, HE X, ZHANG D, et al. Vibration isolation design for periodically stiffened shells by the wave finite element method[J]. Journal of Sound and Vibration, 2018, 419:90-102.
[31] CREMER L, HECKL M, PETERSSON B A T, et al. Structure-borne sound:Structural vibrations and sound radiation at audio frequencies[M]. 3rd ed. Berlin:Springer-Verlag, 2005:27-56.
[32] 李凯, 赵德有, 黎胜. 结构振动声强法研究及应用[J]. 应用声学, 2010, 29(5):391-400. LI K, ZHAO D Y, LI S. Survey of structural vibration intensity methods[J]. Applied Acoustics, 2010, 29(5):391-400(in Chinese).
[33] 马英群,张锴,徐蒙,等.多重激励下机匣振动能量传递规律与耦合特性[J]. 推进技术, 2019, 40(6):1389-1398. MA Y Q, ZHANG K, XU M, et al. Investigation on transmitting regularities and coupling characteristics of vibrational energy for casing structure under multiple excitations[J]. Journal of Propulsion Technology, 2019, 40(6):1389-1398(in Chinese).
[34] LI Y J, LAI J C S. Prediction of surface mobility of a finite plate with uniform force excitation by structural intensity[J]. Applied Acoustics, 2000, 60(3):371-383.