固体力学与飞行器总体设计

基于结构声强法的机匣振动能量传递特性

  • 马英群 ,
  • 徐蒙 ,
  • 张锴 ,
  • 赵巍 ,
  • 赵庆军
展开
  • 1. 中国科学院 工程热物理研究所, 北京 100190;
    2. 中国科学院大学 航空宇航学院, 北京 100049;
    3. 中国科学院 轻型动力重点实验室, 北京 100190

收稿日期: 2019-01-25

  修回日期: 2019-03-01

  网络出版日期: 2019-05-07

基金资助

国家重点研发计划(2016YFB0901402);国家自然科学基金(51776198)

Vibration energy transmission characteristics of casing based on structural intensity method

  • MA Yingqun ,
  • XU Meng ,
  • ZHANG Kai ,
  • ZHAO Wei ,
  • ZHAO Qingjun
Expand
  • 1. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China;
    2. School of Aeronautics and Astronautics, University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Key Laboratory of Light-duty Gas-turbine, Chinese Academy of Sciences, Beijing 100190, China

Received date: 2019-01-25

  Revised date: 2019-03-01

  Online published: 2019-05-07

Supported by

National Key Technology Research and Development Program of China (2016YFB0901402); National Natural Science Foundation of China (51776198)

摘要

为了分析在转子不平衡力激励作用下机匣上纵波、剪切波、扭转波以及弯曲波所携带的瞬态与稳态振动能量的分布规律和传递特性,将结构声强法拓展成矩阵的形式应用到航空发动机领域。建立了转子不平衡力作用下的双转子-支承-机匣耦合模型,通过由有限元工具和自编译程序组建的计算系统,求解并可视化了在高低压转子不平衡力激励作用下机匣瞬态与稳态的总结构声强场以及不同类型振动波的结构声强场。此外,通过运动方程推导并分析了结构声强与结构振动特性之间的内在物理关系。结果表明,机匣上纵波振动能量穿过法兰边后沿其周向传递,而剪切波和扭转波所携带的振动能量则可以穿过法兰边沿机匣轴向传递;支板上的振动能量首先以弯曲波的形式传递到机匣上,振动能量在机匣上沿主要路径传递过程中会发生不同类型振动波相互转换的现象;结构声强通过结构的动能变化率、应变能变化率以及阻尼耗散等能量参数与结构振动特性产生内在物理联系,对结构振动的控制本质上就是对振动能量流的控制。研究结论可为航空发动机机匣以及整机减振提供一定理论指导。

本文引用格式

马英群 , 徐蒙 , 张锴 , 赵巍 , 赵庆军 . 基于结构声强法的机匣振动能量传递特性[J]. 航空学报, 2019 , 40(9) : 222938 -222938 . DOI: 10.7527/S1000-6893.2019.22938

Abstract

To analyze the distribution rules and transmission characteristics of instantaneous and steady vibration energy carried by longitudinal wave, shear wave, twist wave, and flexural wave on the casing subjected to the rotor unbalanced forces, the structural intensity method is extended into a matrix form and applied to the field of aero-engines. The dual rotor-support-casing coupling model subjected to the rotor unbalanced forces is established. The calculation system consisting of the finite element tool and the in-house program is used to compute and visualize the instantaneous and steady structural intensity fields of the casing for these different types of vibration waves. Moreover, the relationship between the structural intensity and the general vibration characteristics is derived and analyzed from the basic motion equation. The results show that the longitudinal wave vibration energy of the casing passes through the flange and then transmits along the circumferential direction, and the vibration energy carried by the shear wave and the twist wave can be transmitted through the flange and then transmits along the axial direction on the casing. Second, the vibration energy of the support is first transmitted to the casing in the form of the bending wave, and the vibration energy is converted into different types of vibration waves during the transmission along the main path on the casing. Third, the structural intensity generates an intrinsic physical connection between the structure vibration characteristics by the energy parameters such as the kinetic energy change rate, the strain energy change rate, and the damping dissipation. The control of the structure vibration is essentially the control of the vibrational energy flow. The conclusions can provide some guiding significance for the vibration attenuation of the casing and the whole aero-engine.

参考文献

[1] EWINS D J. Control of vibration and resonance in aero engines and rotating machinery-An overview[J]. International Journal of Pressure Vessels & Piping, 2010, 87(9):504-510.
[2] RUHL R L, BOOKER J F. A finite element model for distributed parameter turborotor systems[J]. Journal of Engineering for Industry Trans Asme, 1972, 94(1):126-132.
[3] NIKOLAJSEN J L, HOLMES R. The vibration of a multi-bearing rotor[J]. Journal of Sound & Vibration, 1980, 72(3):343-350.
[4] DE CASTRO H, CAVALCA K, NORDMANN R. Whirl and whip instabilities in rotor-bearing system considering a nonlinear force model[J]. Journal of Sound & Vibration, 2008, 317(1):273-293.
[5] 王海涛. 某型航空发动机整机振动特性分析[D]. 南京:南京航空航天大学, 2010. WANG H T. Research on whole body vibration of aero-engine[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2010(in Chinese).
[6] 陈予恕, 张华彪. 航空发动机整机动力学研究进展与展望[J]. 航空学报, 2011, 32(8):1371-1391. CHEN Y S, ZHANG H B. Review and prospect on the research of dynamics of complete aero-engine systems[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8):1371-1391(in Chinese).
[7] 钟一谔, 何衍宗, 王正, 等. 转子动力学[M]. 北京:清华大学出版社, 1987:196. ZHONG Y E, HE Y Z, WANG Z, et al. Rotodynamic[M]. Beijing:Tsinghua University Publication, 1987:196(in Chinese).
[8] CHEN G. Vibration modelling and verifications for whole aero-engine[J]. Journal of Sound & Vibration, 2015, 349:163-176.
[9] MOKHTAR M A, DARPE A K, GUPTA K. Analysis of stator vibration response for the diagnosis of rub in a coupled rotor-stator system[J]. International Journal of Mechanical Sciences, 2018, 144:392-406.
[10] WANG H F, CHEN G, SONG P P. Simulation analysis of casing vibration response and its verification under blade-casing rubbing fault[J]. Journal of Vibration & Acoustics, 2016, 138(3):1-14.
[11] SHANG Z, JIANG J, HONG L. The global responses characteristics of a rotor/stator rubbing system with dry friction effects[J]. Journal of Sound & Vibration, 2011, 330(10):2150-2160.
[12] MA Y Q, ZHAO Q J, ZHANG K, et al. Investigation on the vibration energy transmission mechanism of casing with different loading and boundary conditions based on structural intensity method[C]//The 9th Asian Joint Conference on Propulsion and Power, AJCPP, 2018.
[13] NOISEUX D U. Measurement of power flow in uniform beams and plates[J]. Journal of the Acoustical Society of America, 1970, 47(1):238-247.
[14] PAVIC G. Measurement of structure borne wave intensity, Part I:Formulation of the methods[J]. Journal of Sound & Vibration, 1976, 49(2):221-230.
[15] WILLIAMS E G. Structural intensity in thin cylindrical shells[J]. Journal of the Acoustical Society of America, 1991, 89:1615-1622.
[16] KEUSTERMANS W, PIRES F, DE GREEF D, et al. Digital stroboscopic holographic interferometry for power flow measurements in acoustically driven membranes[C]//International Aivela Conference on Vibration Measurements by Laser & Noncontact Techniques:Advances & Applications. Melville, NY:AIP Publishing LLC, 2016.
[17] LIU C C, LI F M, TANG L, et al. Vibration control of the finite L-shaped beam structures based on the active and reactive power flow[J]. Science in China Series G (Physics, Mechanics and Astronomy), 2011, 54(2):310-319.
[18] SILVA O M, NEVES M M, JORDAN R, et al. An FEM-based method to evaluate and optimize vibration power flow through a beam-to-plate connection[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2017, 39(2):413-426.
[19] CHEN T, YE Y M, LI Y Q. Investigations on structural intensity in nanoplates with thermal load[J]. Physica E:Low-dimensional Systems and Nanostructures, 2018, 103:1-9.
[20] PETRONE G, VENDITTIS M D, ROSA S D, et al. Numerical and experimental investigations on structural intensity in plates[J]. Composite Structures, 2016, 140:94-105.
[21] KWON H W, HONG S Y, SONG J H. Vibrational energy flow analysis of coupled cylindrical thin shell structures[J]. Journal of Mechanical Science & Technology, 2016, 30(9):4049-4062.
[22] CHEN Y H, JIN G Y, LIU Z G. Vibrational energy flow analysis of coupled cylindrical shell-plate structure with general boundary and coupling conditions[J]. Journal of Mechanical Engineering Science, 2014, 229(10):207-218.
[23] CHO D S, CHOI D S, KIM T M, et al. Structural intensity analysis of stepped thickness rectangular plates utilizing the finite element method[J]. Thin-walled Structures, 2016, 109:1-12.
[24] CHO D S, CHOI T M, KIM J H, et al. Dominant components of vibrational energy flow in stiffened panels analysed by the structural intensity technique[J]. International Journal of Naval Architecture and Ocean Engineering, 2017, 10:583-595.
[25] PIRES F, MUYSHONDT P G G, KEUSTEREMANS W, et al. Structural intensity analysis of flat plates based on digital stroboscopic holography measurements[J]. Journal of Sound and Vibration, 2018, 428:168-178.
[26] FRESCHI A A, PEREIRA A K, AHMIDA K M, et al. Analyzing the total structural intensity in beams using a homodyne laser Doppler vibrometer[J]. Shock & Vibration, 2000, 7:299-308.
[27] ROMANO A J, ABRAHAM P B, WILLIAMS E G. A poynting vector formulation for thin shells and plates, and its application to structural intensity analysis and source localization. Part I:Theory[J]. The Journal of the Acoustical Society of America, 1998, 87(3):1166-1175.
[28] 马英群, 张锴, 王云飞, 等. 不平衡激励作用下周向加肋机匣振动能量传递机理[J]. 航空动力学报, 2018, 33(11):2583-2592. MA Y Q, ZHANG K, WANG Y F, et al. Vibration energy transmitting mechanism of ring-stiffened casing excited by rotor unbalance[J]. Journal of Aerospace Power, 2018, 33(11):2583-2592(in Chinese).
[29] GAVRIC L, PAVIC G. A finite element method for computation of structural intensity by the normal mode approach[J]. Journal of Sound & Vibration, 1993, 164(1):29-43.
[30] HONG J, HE X, ZHANG D, et al. Vibration isolation design for periodically stiffened shells by the wave finite element method[J]. Journal of Sound and Vibration, 2018, 419:90-102.
[31] CREMER L, HECKL M, PETERSSON B A T, et al. Structure-borne sound:Structural vibrations and sound radiation at audio frequencies[M]. 3rd ed. Berlin:Springer-Verlag, 2005:27-56.
[32] 李凯, 赵德有, 黎胜. 结构振动声强法研究及应用[J]. 应用声学, 2010, 29(5):391-400. LI K, ZHAO D Y, LI S. Survey of structural vibration intensity methods[J]. Applied Acoustics, 2010, 29(5):391-400(in Chinese).
[33] 马英群,张锴,徐蒙,等.多重激励下机匣振动能量传递规律与耦合特性[J]. 推进技术, 2019, 40(6):1389-1398. MA Y Q, ZHANG K, XU M, et al. Investigation on transmitting regularities and coupling characteristics of vibrational energy for casing structure under multiple excitations[J]. Journal of Propulsion Technology, 2019, 40(6):1389-1398(in Chinese).
[34] LI Y J, LAI J C S. Prediction of surface mobility of a finite plate with uniform force excitation by structural intensity[J]. Applied Acoustics, 2000, 60(3):371-383.
文章导航

/