[1] LAUB B, VENKATAPATHY E. Thermal protection system technology and facility needs for demanding future planetary missions[C]//Proceedings of International Workshop on Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science. Paris:European Space Agency, 2003:1-9.
[2] 梁馨, 罗丽娟,谭珏,等. 美国空间探测器热防护材料发展现状及趋势[J]. 材料导报, 2016, 30(S1):551-557. LIANG X, LUO L J,TAN J, et al. Current status and trend of thermal protection material for space exploration in America[J]. Materials Review, 2016, 30(S1):551-557(in Chinese).
[3] 薛华飞, 姚秀荣,程海明,等. 热防护用轻质烧蚀材料现状与发展[J]. 哈尔滨理工大学学报, 2017, 22(1):123-128. XUE H F, YAO X R, CHENG H M, et al. Current situation development of lightweight ablation materials for thermal protection[J]. Journal of Harbin University of Science and Technology, 2017, 22(1):123-128(in Chinese).
[4] 赵梦熊. 载人飞船返回舱的烧蚀防热[J]. 气动实验与测量控制, 1996, 10(3):1-9. ZHAO M X. Ablative thermal protection of capsule type reentry vehicle[J]. Aerodynamic Experiment and Measurement & Control, 1996, 10(3):1-9(in Chinese).
[5] 易法军, 梁军,孟松鹤,等. 防热复合材料的烧蚀机理与模型研究[J]. 固体火箭技术, 2000, 23(3):49-57. YI F J, LIANG J, MENG S H, et al. Study on ablation mechanism and models of heatshield composites[J]. Journal of Solid Rocket Technology, 2000, 23(3):49-57(in Chinese).
[6] 张蕊. 美国载人航天商业运输的发展[J]. 航天器工程, 2011, 20(6):86-93. ZHANG R. Development of American human spaceflight commercial transportation[J]. Spacecraft Engineering, 2011, 20(6):86-93(in Chinese).
[7] NOWLIN S, THIMONS L. Surviving the heat:The application of phenolic impregnated carbon ablators[EB/OL]. (2013-02-01)[2018-07-21]. https://spacex.com.pl/files/2017-11/pica-x.pdf?870b177%20e37.
[8] VENKATAPATHY E, BECK R, ELLERBY D, et al. Development challenges of game-changing entry system technologies from concept to mission infusion[C]//37th IEEE Aerospace Sciences. Piscataway, NJ:IEEE Press, 2016:1-13.
[9] SUZUKI T, AOKI T, OGASAWARA T, et al. Nonablative lightweight thermal protection system for mars aeroflyby sample collection mission[J]. Acta Astronautica, 2017, 136:407-420.
[10] BARCENA J, FLOREZ S, PEREZ B, et al. FP7/space project "HYDRA" hybrid ablative development for re-entry in planetary atmospheric thermal protection[C]//7th European Workshop on TPS & Hot Structures. Paris:European Space Agency, 2013.
[11] BARCENA J, FLOREZ S, PEREZ B, et al. Novel hybrid ablative/ceramic heatshield for earth atmospheric re-entry[C]//13th European Conference on Spacecraft Structures, Materials & Environmental Testing. Paris:European Space Agency, 2014.
[12] BARCENA J, LAGOS M, AGOTE I, et al. SMARTEES FP7 space project-Towards a new TPS reusable concept for atmospheric reentry from low earth orbit[C]//7th European Workshop on TPS & Hot Structures. Paris:European Space Agency, 2013.
[13] 李志杰, 果琳丽,张柏楠,等. 国外可重复使用载人飞船发展现状与关键技术研究[J]. 航天器工程, 2016, 25(2):106-112. LI Z J, GUO L L, ZHANG B N, et al. Study on development status and key technologies of reusable manned spacecraft[J]. Spacecraft Engineering, 2016, 25(2):106-112(in Chinese).
[14] 杨雷, 张柏楠,郭斌,等. 新一代多用途载人飞船概念研究[J]. 航空学报, 2015, 36(3):703-713. YANG L, ZHANG B N, GUO B, et al. Concept definition of new-generation multi-purpose manned spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):703-713(in Chinese).
[15] 董彦芝, 刘峰,杨昌昊,等. 探月工程三期月地高速再入返回飞行器防热系统设计与验证[J]. 中国科学:技术科学, 2015, 45(2):151-159. DONG Y Z, LIU F, YANG C H, et al. Design and verification of the TPS of the circumlunar free return and reentry flight vehicle for the 3rd phase of Chinese Lunar exploration program[J]. Scientia Sinica Technologica, 2015, 45(2):151-159(in Chinese).
[16] BARTLETT E P, ANDERSON L W, CURRY D M. An evaluation of ablation mechanisms for the Apollo heat shield material[J]. Journal of Spacecraft and Rockets, 1971, 8(5):463-469.
[17] REUTHER J. Orion thermal protection system, advanced development project[C]//7th International Planetary Probe Workshop, 2010.
[18] STROUHAL G, CURRY D M. Thermal protection system performance of the Apollo command module:AIAA-1966-1718[R]. Reston, VA:AIAA, 1966.
[19] ERB R B, GREENSHIELDS D H, CHAUVIN L T, et al. Apollo thermal protection system development[J]. Journal of Spacecraft and Rockets, 1970, 7(6):727-734.
[20] CICHAN T, NORRIS S D, MARSHALL P F. Orion:EFT-1 flight test results and EM-1/2 status:AIAA-2015-4414[R]. Reston, VA:AIAA, 2015.
[21] 党嘉立, 顾兆栴. 中国"神州号"载人飞船返回舱防热材料现状及展望[C]//第十二届全国复合材料学术会议论文集. 北京:中国复合材料学会, 2002:15-19. DANG J L, GU Z Z. Status & prospect of thermal protective materials on China's Shenzhou spacecraft[C]//12th National Conference on Composite Materials. Beijing:Chinese Society for Composite Materials, 2002:15-19(in Chinese).
[22] 王春明, 梁馨,孙宝岗,等. 低密度烧蚀材料在神舟飞船上的应用[J]. 宇航材料工艺, 2011, 41(2):5-8. WANG C M, LIANG X, SUN B G, et al. Application of low density ablative material on Shenzhou spacecraft[J]. Aerospace Materials & Technology, 2011, 41(2):5-8(in Chinese).
[23] 叶培建, 杨孟飞,彭兢,等. 中国深空探测进入/再入返回技术的发展现状和展望[J]. 中国科学:技术科学, 2015, 45(3):229-238. YE P J, YANG M F, PENG J, et al. Review and prospect of atmospheric entry and earth reentry technology of China deep space exploration[J]. Scientia Sinica Technologica, 2015, 45(3):229-238(in Chinese).
[24] LAUB B, CHEN Y K, JOHN A D. Development of a high-fidelity thermal/ablation response model for SLA-561V:AIAA-2009-4232[R]. Reston, VA:AIAA, 2009.
[25] VENKATAPATHY E, LAUB B, HARTMAN G J, et al. Thermal protection system development, testing, and qualification for atmospheric probes and sample return missions:Examples for Saturn, Titan and Stardust-type sample return[J]. Advances in Space Research, 2009, 44:138-150.
[26] BECK R A S, DRIVER D M, WRIGHT M J, et al. Development of the Mars Science Laboratory heatshield thermal protection system:AIAA-2009-4229[R]. Reston, VA:AIAA, 2009.
[27] TRAN H K. Development of lightweight ceramic ablators and arc-jet test results:NASA-TM-108798[R]. Washington, D.C.:NASA, 1994.
[28] TRAN H K, JOHNSON C E, RASKY D J, et al. Phenolic Impregnated Carbon Ablators (PICA) for Discovery missions:AIAA-1996-1911[R]. Reston, VA:AIAA, 1996.
[29] AGRAWAL P, CHAVEZGARCIA J F, PHAM J. Fracture in phenolic impregnated carbon ablator[J]. Journal of Spacecraft and Rockets, 2013, 50(4):735-741.
[30] WILLCOCKSON W H. Stardust sample return capsule design experience[J]. Journal of Spacecraft and Rockets, 1999, 36(3):470-474.
[31] TRAN H K, JOHNSON C E, HSU M T, et al. Qualification of the forebody heatshield of the Stardust's sample return capsule:AIAA-1997-2482[R]. Reston, VA:AIAA, 1997.
[32] VENKATAPATHY E, REUTHER J. NASA crew exploration vehicle, thermal protection system, lessons learned[C]//6th International Planetary Probe Workshop, 2008.
[33] MILOS F S, GASCH M J, PRABHU D K. Conformal Phenolic Impregnated Carbon Ablator (C-PICA) arcjet testing, ablation and thermal response:AIAA-2015-1448[R]. Reston, VA:AIAA, 2015.
[34] GASCH M, BECK R, AGRAWAL P. Arcjet testing of advanced conformal ablative TPS[C]//38th Annual Conference on Composites, Materials and Structures. Washington D.C.:NASA, 2014:1-27.
[35] STACKPOOLE M M, GHANDEHARI E M, THORNTON J J, et al. Flexible ablators:US 9592923 B1[P]. 2017-03-14.
[36] STACKPOLE M, THORNTON J, FAN W, et al. Development of low density flexible carbon phenolic ablators[C]//2011 National Space and Missile Materials Symposium. Washington, D.C.:NASA, 2011:1-22.
[37] ZELL P, VENKATAPATHY E, ARNOLD J. The block-ablator-in-a-honeycomb heat shield architecture overview[EB/OL]. (2014-05-19)[2018-07-22]. https://www.researchgate.net/publication/228543129.
[38] MCGUIRE M K. Dual heat pulse, dual layer thermal protection system sizing analysis and trade studies for human Mars entry descent and landing:AIAA-2011-0343[R]. Reston, VA:AIAA, 2011.
[39] BOUILLY J M, PLAINDOUX C. ASTERM:Maturation of a new low density ablative material[C]//7th European Workshop on TPS & Hot Structures. Paris:European Space Agency, 2013.
[40] HONG C Q, HAN J C, ZHANG X H, et al. Novel phenolic impregnated 3-D fine-woven pierced carbon fabric composites:Microstructure and ablation behavior[J]. Composites Part B:Engineering, 2012, 43(5):2389-2394.
[41] CHENG H M, XUE H F, HONG C Q, et al. Preparation, mechanical, thermal and ablative properties of lightweight needled carbon fibre felt/phenolic resin aerogel composite with a bird's nest structure[J]. Composites Science & Technology, 2017, 140:63-72.
[42] WANG C H, JIN X Y, CHENG H M, et al. Organic aerogel impregnated low-density carbon/carbon composites:Preparation, properties and response under simulated atmospheric re-entry conditions[J]. Materials & Design, 2017, 131:177-185.
[43] YIN R Y, CHENG H M, HONG C Q, et al. Synthesis and characterization of novel phenolic resin/silicone hybrid aerogel composites with enhanced thermal, mechanical and ablative properties[J]. Composites Part A:Applied Science and Manufacturing, 2017, 101:500-510.
[44] 贾献峰, 刘旭华,乔文明,等.酚醛浸渍碳烧蚀体(PICA)的制备、结构及性能[J]. 宇航材料工艺, 2016, 46(1):77-80,90. JIA X F, LIU X H, QIAO W M, et al. Preparation and properties of phenolic impregnated carbon ablator[J]. Aerospace Materials & Technology, 2016, 46(1):77-80,90(in Chinese).
[45] 贾献峰, 王际童,龙东辉,等. PICA-X的制备及其炭化前后性能研究[J]. 宇航材料工艺, 2016, 46(6):46-49. JIA X F,WANG J T, LONG D H, et al. Preparation and properties of PICA-X before and after carbonization[J]. Aerospace Materials & Technology, 2016, 46(6):46-49(in Chinese).
[46] 董金鑫, 朱召贤,姚鸿俊,等. 酚醛气凝胶/碳纤维复合材料的结构调控及性能研究[J]. 化工学报, 2018, 69(11):4896-4901. DONG J X, ZHU Z X, YAO H J, et al. Structural control and properties of phenolic aerogel/carbon fiber composites[J]. CIESC Journal, 2018, 69(11):4896-4901(in Chinese).
[47] ELLERBY D, VENKATAPATHY E, STACKPOOLE M, et al. Woven thermal protection system based Heat-shield for Extreme Entry Environments Technology (HEEET)[C]//National Space and Missile Materials Symposium. Washington, D.C.:NASA, 2013:1-17.
[48] FELDMAN J D, ELLERBY D, STACKPOOLE M, et al. Development of 3D woven ablative thermal protection systems (TPS) for NASA spacecraft[C]//South Texas Society for the Advancement of Materials and Process Engineering (SAMPE) Chapter Meeting. Washington, D.C.:NASA, 2015:1-68.
[49] VENKATAPATHY E, ELLERBY D, GAGE P, et al. Heat-shield for extreme entry environment technology (HEEET) development status[C]//13th International Planetary Probe Workshop, 2016.
[50] MILOS F S, CHEN Y K, MAHZARI M. Arcjet tests and thermal response analysis for dual-layer woven carbon phenolic:AIAA-2017-3353[R]. Reston, VA:AIAA, 2017.
[51] ELLERBY D, BOGHOZIAN T, DRIVER D, et al. Heatshield for Extreme Entry Environment Technology (HEEET) development and maturation status[C]//Outer Planet Advisory Group (OPAG) Spring Meeting. Washington, D.C.:NASA, 2018.
[52] VENKATAPATHY E, ELLERBY D, STACKPOOLE M, et al. Heatshield for Extreme Entry Environment Technology (HEEET)[C]//11th Venus Exploration Analysis Group (VEXAG) Meeting, 2013.
[53] WALKER S P, DARYABEIGI K, SAMAREH J A, et al. Preliminary development of a multifunctional hot structure heat shield:AIAA-2014-0350[R]. Reston, VA:AIAA, 2014.
[54] WALKER S P, DARYABEIGI K, SAMAREH J A, et al. A multifunctional hot structure heat shield concept for planetary entry:AIAA-2015-3530[R]. Reston, VA:AIAA, 2015.
[55] LANGSTON S L, LANG C G, SAMAREH J A. Parametric study of an ablative TPS and hot structure heatshield for a Mars entry capsule vehicle:AIAA-2017-5290[R]. Reston, VA:AIAA, 2017.
[56] BARCENA J, FLOREZ S, PEREZ B, et al. Novel hybrid ablative/ceramic development for re-entry in planetary atmospheric thermal protection:interfacial adhesive selection and test verification plan:AIAA-2014-2373[R]. Reston, VA:AIAA, 2014.
[57] TRIANTOU K, MERGIA K, MARINOU A, et al. Novel hybrid ablative/ceramic layered composite for earth re-entry thermal protection:Microstructural and mechanical performance[J]. Journal of Materials Engineering and Performance, 2015, 24(4):1452-1461.
[58] TRIANTOU K, MERGIA K, FLOREZ S, et al. Thermo-mechanical performance of an ablative/ceramic composite hybrid thermal protection structure for re-entry applications[J]. Composites Part B:Engineering, 2015, 82:159-165.
[59] TRIANTOU K, PEREZ B, MARINOU A, et al. Performance of cork and ceramic matrix composite joints for re-entry thermal protection structures[J]. Composites Part B:Engineering, 2017, 108:270-278.
[60] TRIANTOU K, MERGIA K, PEREZ B, et al. Thermal shock performance of carbon-bonded carbon fiber composite and ceramic matrix composite joints for thermal protection re-entry applications[J]. Composites Part B:Engineering, 2017, 111:270-278.
[61] BARCENA J, GARMENDIA I, TRIANTOU K, et al. Infrared and vibration tests of hybrid ablative/ceramic matrix technological breadboards for earth re-entry thermal protection systems[J]. Acta Astronautica, 2017, 134:85-97.
[62] 李俊宁, 胡子君,孙陈诚,等. 高超声速飞行器隔热材料技术研究进展[J]. 宇航材料工艺, 2011,41(6):10-13, 31. LI J N, HU Z J, SUN C C, et al. Thermal insulation materials for hypersonic vehicles[J]. Aerospace Materials & Technology, 2011,41(6):10-13, 31(in Chinese).
[63] SUN J J, HU Z J, LI J N, et al. Thermal and mechanical properties of fibrous zirconia ceramics with ultra-high porosity[J]. Ceramics International, 2014, 40:11787-11793.
[64] LI J N, HU Z J, WANG X T, et al. Preparation of nanoporous alumina superinsulator with ultra-low thermal conductivity and improved heat resistance up to 1200℃[J]. Ceramics International, 2017, 43:8343-8347.
[65] 张泽, 王晓栋,吴宇,等. 气凝胶材料及其应用[J]. 硅酸盐学报, 2018, 46(10):1426-1446. ZHANG Z, WANG X D, WU Y, et al. Aerogels and their applications-A short review[J]. Journal of the Chinese Ceramic Society, 2018, 46(10):1426-1446(in Chinese).
[66] 高庆福, 张长瑞,冯坚,等. 氧化硅气凝胶隔热复合材料研究进展[J]. 材料科学与工程学报, 2009, 27(2):302-306. GAO Q F, ZHANG C R, FENG J, et al. Progress of silica aerogel insulation composites[J]. Journal of Materials Science and Engineering, 2009, 27(2):302-306(in Chinese).
[67] PARALE V G, JUNG H N R, HAN W, et al. Improvement in the high temperature thermal insulation performance of Y2O3 opacified silica aerogels[J]. Journal of Alloys and Compounds, 2017, 727:871-878.
[68] XU L, JIANG Y G, FENG J Z, et al. Infrared-opacified Al2O3-SiO2 aerogel composites reinforced by SiC-coated mullite fibers for thermal insulations[J]. Ceramics International, 2015, 41:437-442.
[69] LIU R L, DONG X, XIE S T, et al. Ultralight, thermal insulating, and high-temperature-resistant mullite-based nanofibrous aerogels[J]. Chemical Engineering Journal, 2019, 360:464-472.
[70] MA J, YE F, YANG C P, et al. Heat-resistant, strong alumina-modified silica aerogel fabricated by impregnating silicon oxycarbide aerogel with boehmite sol[J]. Materials & Design, 2017, 131:226-231.
[71] ZU G Q, SHEN J, ZOU L P, et al. Highly thermally stable zirconia/silica composite aerogels prepared by supercritical deposition[J]. Microporous and Mesoporous Materials, 2017, 238:90-96.
[72] ZU G Q, SHEN J, WANG W Q, et al. Heat-resistant, strong titania aerogels achieved by supercritical deposition[J]. The Journal of Supercritical Fluids, 2015, 106:145-151.
[73] 吴晓栋, 崔升,王岭,等. 耐高温气凝胶隔热材料的研究进展[J]. 材料导报, 2015, 29(5):102-108. WU X D, CUI S, WANG L, et al. Advance in research of high temperature resistant aerogel used as insulation material[J]. Materials Review,2015, 29(5):102-108(in Chinese).
[74] FENG J Z, FENG J, JIANG Y G, et al. Ultralow density carbon aerogels with low thermal conductivity up to 2000℃[J]. Materials Letters, 2011, 65:3454-3456.
[75] SUN W, DU A, GAO G H, et al. Graphene-templated carbon aerogels combining with ultra-high electrical conductivity and ultra-low thermal conductivity[J]. Microporous and Mesoporous Materials, 2017, 253:71-79.
[76] XU X, ZHANG Q Q, HAO M L, et al. Double-negative-index ceramic aerogels for thermal superinsulation[J]. Science, 2019, 363:723-727.
[77] BECK R A S, ARNOLD J O, WHITE S, et al. Overview of initial development of flexible ablators for hypersonic inflatable aerodynamic decelerators:AIAA-2011-2511[R]. Reston, VA:AIAA, 2011.
[78] HUGHES S J, DILLMAN R A, STARR B R, et al. Inflatable Re-entry Vehicle Experiment (IRVE) design overview:AIAA-2005-1636[R]. Reston, VA:AIAA, 2005.
[79] DILLMAN R. Inflatable Reentry Vehicle Experiment-3(IRVE-3) project overview & instrumentation[C]//Entry Descent and Landing Workshop. Washington, D.C.:NASA, 2015.
[80] LICHODZIEJEWSKI L, KELLEY C, TUTT B, et al. Design and testing of the inflatable aeroshell for the IRVE-3 flight experiment:AIAA-2012-1515[R]. Reston, VA:AIAA, 2012.
[81] DELCORSO J A, CHEATWOOD F M, BRUCE W E, et al. Advanced high-temperature flexible TPS for inflatable aerodynamic decelerators:AIAA-2011-2510[R]. Reston, VA:AIAA, 2011.
[82] BRUCE W E, MESICK N J, FERLEMANN P G, et al. Aerothermal ground testing of flexible thermal protection systems for hypersonic inflatable aerodynamic decelerators[C]//9th International Planetary Probe Workshop, 2012.
[83] HUGHES S J, CHEATWOOD F M, CALOMINO A M, et al. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology development overview[C]//10th International Planetary Probe Workshop, 2013.
[84] SWANSON G, SMITH B, AKAMINE R, et al. The HIAD orbital flight demonstration instrumentation suite[C]//15th International Planetary Probe Workshop, 2018.
[85] 曹旭, 黄明星,丁弘,等. 充气式再入与减速系统柔性热防护材料的热冲击试验[J]. 载人航天, 2018, 24(1):26-33. CAO X, HUANG M X, DING H, et al. Thermal shock test of flexible thermal protection system for inflatable reentry and descent technology[J]. Manned Spaceflight, 2018, 24(1):26-33(in Chinese).
[86] 曹旭, 廖航,许望晶,等. 充气式减速技术试验器的设计和飞行试验[J]. 载人航天, 2018, 24(6):802-808. CAO X, LIAO H, XU W J, et al.Design and flight test of demonstration aircraft with inflatable reentry and descent technology[J]. Manned Spaceflight, 2018, 24(6):802-808(in Chinese).
[87] 贺卫亮, 才晶晶,汪龙芳,等. 一次发射多次返回的充气式再入飞行器技术[J]. 载人航天, 2011(4):37-42. HE W L, CAI J J, WANG L F, et al.Inflatable reentry technologies research for Single Launching and MultiReentry (SLMR) space transporting system[J]. Manned Spaceflight, 2011(4):37-42(in Chinese).
[88] DILLMAN R. Inflatable reentry vehicles and instrumentation needs[C]//2015 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE). Piscataway, NJ:IEEE Press, 2015.
[89] SWANSON G, CHEATWOOD N, JOHNSON K, et al. Manufacturing challenges and benefits when scaling the HIAD stacked-torus aeroshell to a 15m-class system[C]//13th International Planetary Probe Workshop, 2016.
[90] VENKATAPATHY E, ARNOLD J, FERNANDEZ I, et al. Adaptive Deployable Entry and Placement Technology (ADEPT):A feasibility study for human missions to mars:AIAA-2011-2608[R]. Reston, VA:AIAA, 2011.
[91] ARNOLD J O, PETERSON K H, YOUNT B C, et al. Thermal and structural performance of woven carbon cloth for adaptive deployable entry and placement technology:AIAA-2013-1370[R]. Reston, VA:AIAA, 2013.
[92] CASSELL A, GORBUNOV S, YOUNT B, et al. System level aerothermal testing for the Adaptive Deployable Entry and Placement Technology (ADEPT)[C]//13th International Planetary Probe Workshop, 2016.
[93] WERCINSKI P. The Adaptable, Deployable Entry and Placement Technology (ADEPT)[C]//14th International Planetary Probe Workshop, 2017.
[94] SMITH B, WILLIAMS J, WERCINSKI P, et al. ADEPT SR-1 development and testing[C]//15th International Planetary Probe Workshop, 2018.