综述

返回舱/空间探测器热防护结构发展现状与趋势

  • 解维华 ,
  • 韩国凯 ,
  • 孟松鹤 ,
  • 杨强 ,
  • 金华
展开
  • 哈尔滨工业大学 特种环境复合材料技术国家级重点实验室, 哈尔滨 150080

收稿日期: 2018-11-13

  修回日期: 2019-02-25

  网络出版日期: 2019-04-28

基金资助

国家基础研究发展计划(2015CB655200);国家自然科学基金(11672088);可靠性与环境工程技术重点实验室基金(6142004180303)

Development status and trend of thermal protection structure for return capsules and space probes

  • XIE Weihua ,
  • HAN Guokai ,
  • MENG Songhe ,
  • YANG Qiang ,
  • JIN Hua
Expand
  • National Key Laboratory of Science and Technology on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150080, China

Received date: 2018-11-13

  Revised date: 2019-02-25

  Online published: 2019-04-28

Supported by

National Basic Research Program of China (2015CB655200); National Natural Science Foundation of China (11672088); Foundation of National Key Laboratory of Science and Technology on Reliability and Environmental Engineering (6142004180303)

摘要

针对中国天地往返和深空探测领域对热防护结构的需求,综述了国内外返回舱和空间探测器热防护材料/结构的发展现状,着重介绍了包括蜂窝增强热防护材料、纤维增强热防护材料、组合式热防护结构以及展开式热防护结构等在内的代表性热防护材料/结构的设计理念和性能特征。在系统总结热防护结构发展趋势的基础上,分析了返回舱和空间探测器热防护结构发展中存在的关键问题,可以看出:纤维增强热防护材料在热防护结构重量方面表现出了突出优势,材料拼接设计成为结构发展的重要阻碍;组合式热防护结构设计在现有材料发展水平的基础上,将成为提高热防护结构效率的有力途径;展开式热防护结构有望使航天器有效载荷重量显著提升,但受限于柔性热防护材料性能和结构工艺,仍有待发展。更加频繁的天地往返运输和深空探测项目的开展必将对热防护结构发展产生巨大的推动作用。

本文引用格式

解维华 , 韩国凯 , 孟松鹤 , 杨强 , 金华 . 返回舱/空间探测器热防护结构发展现状与趋势[J]. 航空学报, 2019 , 40(8) : 22792 -022792 . DOI: 10.7527/S1000-6893.2019.22792

Abstract

In view of the demand of thermal protection system for China space transportation system and deep space exploration, domestic and international studies on development and status of thermal protection materials and structures for return capsules and space probes are reviewed, focusing on the design idea and the performance characteristics of representative materials and structures including honeycomb reinforced thermal protection materials, fiber reinforced thermal protection materials, combined thermal protection structures, and deployable thermal protection structures. On this basis, the development tendency and obstacles of the materials and structures are analyzed, showing that fiber reinforced thermal protection materials have predominance in structural weight and the seam design is the important obstacle to the corresponding structure development. Moreover, on the basis of existing materials, the combined thermal protection structure design is becoming an effective method for improving the efficiency of thermal protection structure. The deployable thermal protection structures are expected to significantly enhance the payload of spacecraft; however, the flexible thermal protection materials still need to be developed. Generally, more frequent space transportation and development of deep space exploration will play an important role in promoting the development of thermal protection structures.

参考文献

[1] LAUB B, VENKATAPATHY E. Thermal protection system technology and facility needs for demanding future planetary missions[C]//Proceedings of International Workshop on Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science. Paris:European Space Agency, 2003:1-9.
[2] 梁馨, 罗丽娟,谭珏,等. 美国空间探测器热防护材料发展现状及趋势[J]. 材料导报, 2016, 30(S1):551-557. LIANG X, LUO L J,TAN J, et al. Current status and trend of thermal protection material for space exploration in America[J]. Materials Review, 2016, 30(S1):551-557(in Chinese).
[3] 薛华飞, 姚秀荣,程海明,等. 热防护用轻质烧蚀材料现状与发展[J]. 哈尔滨理工大学学报, 2017, 22(1):123-128. XUE H F, YAO X R, CHENG H M, et al. Current situation development of lightweight ablation materials for thermal protection[J]. Journal of Harbin University of Science and Technology, 2017, 22(1):123-128(in Chinese).
[4] 赵梦熊. 载人飞船返回舱的烧蚀防热[J]. 气动实验与测量控制, 1996, 10(3):1-9. ZHAO M X. Ablative thermal protection of capsule type reentry vehicle[J]. Aerodynamic Experiment and Measurement & Control, 1996, 10(3):1-9(in Chinese).
[5] 易法军, 梁军,孟松鹤,等. 防热复合材料的烧蚀机理与模型研究[J]. 固体火箭技术, 2000, 23(3):49-57. YI F J, LIANG J, MENG S H, et al. Study on ablation mechanism and models of heatshield composites[J]. Journal of Solid Rocket Technology, 2000, 23(3):49-57(in Chinese).
[6] 张蕊. 美国载人航天商业运输的发展[J]. 航天器工程, 2011, 20(6):86-93. ZHANG R. Development of American human spaceflight commercial transportation[J]. Spacecraft Engineering, 2011, 20(6):86-93(in Chinese).
[7] NOWLIN S, THIMONS L. Surviving the heat:The application of phenolic impregnated carbon ablators[EB/OL]. (2013-02-01)[2018-07-21]. https://spacex.com.pl/files/2017-11/pica-x.pdf?870b177%20e37.
[8] VENKATAPATHY E, BECK R, ELLERBY D, et al. Development challenges of game-changing entry system technologies from concept to mission infusion[C]//37th IEEE Aerospace Sciences. Piscataway, NJ:IEEE Press, 2016:1-13.
[9] SUZUKI T, AOKI T, OGASAWARA T, et al. Nonablative lightweight thermal protection system for mars aeroflyby sample collection mission[J]. Acta Astronautica, 2017, 136:407-420.
[10] BARCENA J, FLOREZ S, PEREZ B, et al. FP7/space project "HYDRA" hybrid ablative development for re-entry in planetary atmospheric thermal protection[C]//7th European Workshop on TPS & Hot Structures. Paris:European Space Agency, 2013.
[11] BARCENA J, FLOREZ S, PEREZ B, et al. Novel hybrid ablative/ceramic heatshield for earth atmospheric re-entry[C]//13th European Conference on Spacecraft Structures, Materials & Environmental Testing. Paris:European Space Agency, 2014.
[12] BARCENA J, LAGOS M, AGOTE I, et al. SMARTEES FP7 space project-Towards a new TPS reusable concept for atmospheric reentry from low earth orbit[C]//7th European Workshop on TPS & Hot Structures. Paris:European Space Agency, 2013.
[13] 李志杰, 果琳丽,张柏楠,等. 国外可重复使用载人飞船发展现状与关键技术研究[J]. 航天器工程, 2016, 25(2):106-112. LI Z J, GUO L L, ZHANG B N, et al. Study on development status and key technologies of reusable manned spacecraft[J]. Spacecraft Engineering, 2016, 25(2):106-112(in Chinese).
[14] 杨雷, 张柏楠,郭斌,等. 新一代多用途载人飞船概念研究[J]. 航空学报, 2015, 36(3):703-713. YANG L, ZHANG B N, GUO B, et al. Concept definition of new-generation multi-purpose manned spacecraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):703-713(in Chinese).
[15] 董彦芝, 刘峰,杨昌昊,等. 探月工程三期月地高速再入返回飞行器防热系统设计与验证[J]. 中国科学:技术科学, 2015, 45(2):151-159. DONG Y Z, LIU F, YANG C H, et al. Design and verification of the TPS of the circumlunar free return and reentry flight vehicle for the 3rd phase of Chinese Lunar exploration program[J]. Scientia Sinica Technologica, 2015, 45(2):151-159(in Chinese).
[16] BARTLETT E P, ANDERSON L W, CURRY D M. An evaluation of ablation mechanisms for the Apollo heat shield material[J]. Journal of Spacecraft and Rockets, 1971, 8(5):463-469.
[17] REUTHER J. Orion thermal protection system, advanced development project[C]//7th International Planetary Probe Workshop, 2010.
[18] STROUHAL G, CURRY D M. Thermal protection system performance of the Apollo command module:AIAA-1966-1718[R]. Reston, VA:AIAA, 1966.
[19] ERB R B, GREENSHIELDS D H, CHAUVIN L T, et al. Apollo thermal protection system development[J]. Journal of Spacecraft and Rockets, 1970, 7(6):727-734.
[20] CICHAN T, NORRIS S D, MARSHALL P F. Orion:EFT-1 flight test results and EM-1/2 status:AIAA-2015-4414[R]. Reston, VA:AIAA, 2015.
[21] 党嘉立, 顾兆栴. 中国"神州号"载人飞船返回舱防热材料现状及展望[C]//第十二届全国复合材料学术会议论文集. 北京:中国复合材料学会, 2002:15-19. DANG J L, GU Z Z. Status & prospect of thermal protective materials on China's Shenzhou spacecraft[C]//12th National Conference on Composite Materials. Beijing:Chinese Society for Composite Materials, 2002:15-19(in Chinese).
[22] 王春明, 梁馨,孙宝岗,等. 低密度烧蚀材料在神舟飞船上的应用[J]. 宇航材料工艺, 2011, 41(2):5-8. WANG C M, LIANG X, SUN B G, et al. Application of low density ablative material on Shenzhou spacecraft[J]. Aerospace Materials & Technology, 2011, 41(2):5-8(in Chinese).
[23] 叶培建, 杨孟飞,彭兢,等. 中国深空探测进入/再入返回技术的发展现状和展望[J]. 中国科学:技术科学, 2015, 45(3):229-238. YE P J, YANG M F, PENG J, et al. Review and prospect of atmospheric entry and earth reentry technology of China deep space exploration[J]. Scientia Sinica Technologica, 2015, 45(3):229-238(in Chinese).
[24] LAUB B, CHEN Y K, JOHN A D. Development of a high-fidelity thermal/ablation response model for SLA-561V:AIAA-2009-4232[R]. Reston, VA:AIAA, 2009.
[25] VENKATAPATHY E, LAUB B, HARTMAN G J, et al. Thermal protection system development, testing, and qualification for atmospheric probes and sample return missions:Examples for Saturn, Titan and Stardust-type sample return[J]. Advances in Space Research, 2009, 44:138-150.
[26] BECK R A S, DRIVER D M, WRIGHT M J, et al. Development of the Mars Science Laboratory heatshield thermal protection system:AIAA-2009-4229[R]. Reston, VA:AIAA, 2009.
[27] TRAN H K. Development of lightweight ceramic ablators and arc-jet test results:NASA-TM-108798[R]. Washington, D.C.:NASA, 1994.
[28] TRAN H K, JOHNSON C E, RASKY D J, et al. Phenolic Impregnated Carbon Ablators (PICA) for Discovery missions:AIAA-1996-1911[R]. Reston, VA:AIAA, 1996.
[29] AGRAWAL P, CHAVEZGARCIA J F, PHAM J. Fracture in phenolic impregnated carbon ablator[J]. Journal of Spacecraft and Rockets, 2013, 50(4):735-741.
[30] WILLCOCKSON W H. Stardust sample return capsule design experience[J]. Journal of Spacecraft and Rockets, 1999, 36(3):470-474.
[31] TRAN H K, JOHNSON C E, HSU M T, et al. Qualification of the forebody heatshield of the Stardust's sample return capsule:AIAA-1997-2482[R]. Reston, VA:AIAA, 1997.
[32] VENKATAPATHY E, REUTHER J. NASA crew exploration vehicle, thermal protection system, lessons learned[C]//6th International Planetary Probe Workshop, 2008.
[33] MILOS F S, GASCH M J, PRABHU D K. Conformal Phenolic Impregnated Carbon Ablator (C-PICA) arcjet testing, ablation and thermal response:AIAA-2015-1448[R]. Reston, VA:AIAA, 2015.
[34] GASCH M, BECK R, AGRAWAL P. Arcjet testing of advanced conformal ablative TPS[C]//38th Annual Conference on Composites, Materials and Structures. Washington D.C.:NASA, 2014:1-27.
[35] STACKPOOLE M M, GHANDEHARI E M, THORNTON J J, et al. Flexible ablators:US 9592923 B1[P]. 2017-03-14.
[36] STACKPOLE M, THORNTON J, FAN W, et al. Development of low density flexible carbon phenolic ablators[C]//2011 National Space and Missile Materials Symposium. Washington, D.C.:NASA, 2011:1-22.
[37] ZELL P, VENKATAPATHY E, ARNOLD J. The block-ablator-in-a-honeycomb heat shield architecture overview[EB/OL]. (2014-05-19)[2018-07-22]. https://www.researchgate.net/publication/228543129.
[38] MCGUIRE M K. Dual heat pulse, dual layer thermal protection system sizing analysis and trade studies for human Mars entry descent and landing:AIAA-2011-0343[R]. Reston, VA:AIAA, 2011.
[39] BOUILLY J M, PLAINDOUX C. ASTERM:Maturation of a new low density ablative material[C]//7th European Workshop on TPS & Hot Structures. Paris:European Space Agency, 2013.
[40] HONG C Q, HAN J C, ZHANG X H, et al. Novel phenolic impregnated 3-D fine-woven pierced carbon fabric composites:Microstructure and ablation behavior[J]. Composites Part B:Engineering, 2012, 43(5):2389-2394.
[41] CHENG H M, XUE H F, HONG C Q, et al. Preparation, mechanical, thermal and ablative properties of lightweight needled carbon fibre felt/phenolic resin aerogel composite with a bird's nest structure[J]. Composites Science & Technology, 2017, 140:63-72.
[42] WANG C H, JIN X Y, CHENG H M, et al. Organic aerogel impregnated low-density carbon/carbon composites:Preparation, properties and response under simulated atmospheric re-entry conditions[J]. Materials & Design, 2017, 131:177-185.
[43] YIN R Y, CHENG H M, HONG C Q, et al. Synthesis and characterization of novel phenolic resin/silicone hybrid aerogel composites with enhanced thermal, mechanical and ablative properties[J]. Composites Part A:Applied Science and Manufacturing, 2017, 101:500-510.
[44] 贾献峰, 刘旭华,乔文明,等.酚醛浸渍碳烧蚀体(PICA)的制备、结构及性能[J]. 宇航材料工艺, 2016, 46(1):77-80,90. JIA X F, LIU X H, QIAO W M, et al. Preparation and properties of phenolic impregnated carbon ablator[J]. Aerospace Materials & Technology, 2016, 46(1):77-80,90(in Chinese).
[45] 贾献峰, 王际童,龙东辉,等. PICA-X的制备及其炭化前后性能研究[J]. 宇航材料工艺, 2016, 46(6):46-49. JIA X F,WANG J T, LONG D H, et al. Preparation and properties of PICA-X before and after carbonization[J]. Aerospace Materials & Technology, 2016, 46(6):46-49(in Chinese).
[46] 董金鑫, 朱召贤,姚鸿俊,等. 酚醛气凝胶/碳纤维复合材料的结构调控及性能研究[J]. 化工学报, 2018, 69(11):4896-4901. DONG J X, ZHU Z X, YAO H J, et al. Structural control and properties of phenolic aerogel/carbon fiber composites[J]. CIESC Journal, 2018, 69(11):4896-4901(in Chinese).
[47] ELLERBY D, VENKATAPATHY E, STACKPOOLE M, et al. Woven thermal protection system based Heat-shield for Extreme Entry Environments Technology (HEEET)[C]//National Space and Missile Materials Symposium. Washington, D.C.:NASA, 2013:1-17.
[48] FELDMAN J D, ELLERBY D, STACKPOOLE M, et al. Development of 3D woven ablative thermal protection systems (TPS) for NASA spacecraft[C]//South Texas Society for the Advancement of Materials and Process Engineering (SAMPE) Chapter Meeting. Washington, D.C.:NASA, 2015:1-68.
[49] VENKATAPATHY E, ELLERBY D, GAGE P, et al. Heat-shield for extreme entry environment technology (HEEET) development status[C]//13th International Planetary Probe Workshop, 2016.
[50] MILOS F S, CHEN Y K, MAHZARI M. Arcjet tests and thermal response analysis for dual-layer woven carbon phenolic:AIAA-2017-3353[R]. Reston, VA:AIAA, 2017.
[51] ELLERBY D, BOGHOZIAN T, DRIVER D, et al. Heatshield for Extreme Entry Environment Technology (HEEET) development and maturation status[C]//Outer Planet Advisory Group (OPAG) Spring Meeting. Washington, D.C.:NASA, 2018.
[52] VENKATAPATHY E, ELLERBY D, STACKPOOLE M, et al. Heatshield for Extreme Entry Environment Technology (HEEET)[C]//11th Venus Exploration Analysis Group (VEXAG) Meeting, 2013.
[53] WALKER S P, DARYABEIGI K, SAMAREH J A, et al. Preliminary development of a multifunctional hot structure heat shield:AIAA-2014-0350[R]. Reston, VA:AIAA, 2014.
[54] WALKER S P, DARYABEIGI K, SAMAREH J A, et al. A multifunctional hot structure heat shield concept for planetary entry:AIAA-2015-3530[R]. Reston, VA:AIAA, 2015.
[55] LANGSTON S L, LANG C G, SAMAREH J A. Parametric study of an ablative TPS and hot structure heatshield for a Mars entry capsule vehicle:AIAA-2017-5290[R]. Reston, VA:AIAA, 2017.
[56] BARCENA J, FLOREZ S, PEREZ B, et al. Novel hybrid ablative/ceramic development for re-entry in planetary atmospheric thermal protection:interfacial adhesive selection and test verification plan:AIAA-2014-2373[R]. Reston, VA:AIAA, 2014.
[57] TRIANTOU K, MERGIA K, MARINOU A, et al. Novel hybrid ablative/ceramic layered composite for earth re-entry thermal protection:Microstructural and mechanical performance[J]. Journal of Materials Engineering and Performance, 2015, 24(4):1452-1461.
[58] TRIANTOU K, MERGIA K, FLOREZ S, et al. Thermo-mechanical performance of an ablative/ceramic composite hybrid thermal protection structure for re-entry applications[J]. Composites Part B:Engineering, 2015, 82:159-165.
[59] TRIANTOU K, PEREZ B, MARINOU A, et al. Performance of cork and ceramic matrix composite joints for re-entry thermal protection structures[J]. Composites Part B:Engineering, 2017, 108:270-278.
[60] TRIANTOU K, MERGIA K, PEREZ B, et al. Thermal shock performance of carbon-bonded carbon fiber composite and ceramic matrix composite joints for thermal protection re-entry applications[J]. Composites Part B:Engineering, 2017, 111:270-278.
[61] BARCENA J, GARMENDIA I, TRIANTOU K, et al. Infrared and vibration tests of hybrid ablative/ceramic matrix technological breadboards for earth re-entry thermal protection systems[J]. Acta Astronautica, 2017, 134:85-97.
[62] 李俊宁, 胡子君,孙陈诚,等. 高超声速飞行器隔热材料技术研究进展[J]. 宇航材料工艺, 2011,41(6):10-13, 31. LI J N, HU Z J, SUN C C, et al. Thermal insulation materials for hypersonic vehicles[J]. Aerospace Materials & Technology, 2011,41(6):10-13, 31(in Chinese).
[63] SUN J J, HU Z J, LI J N, et al. Thermal and mechanical properties of fibrous zirconia ceramics with ultra-high porosity[J]. Ceramics International, 2014, 40:11787-11793.
[64] LI J N, HU Z J, WANG X T, et al. Preparation of nanoporous alumina superinsulator with ultra-low thermal conductivity and improved heat resistance up to 1200℃[J]. Ceramics International, 2017, 43:8343-8347.
[65] 张泽, 王晓栋,吴宇,等. 气凝胶材料及其应用[J]. 硅酸盐学报, 2018, 46(10):1426-1446. ZHANG Z, WANG X D, WU Y, et al. Aerogels and their applications-A short review[J]. Journal of the Chinese Ceramic Society, 2018, 46(10):1426-1446(in Chinese).
[66] 高庆福, 张长瑞,冯坚,等. 氧化硅气凝胶隔热复合材料研究进展[J]. 材料科学与工程学报, 2009, 27(2):302-306. GAO Q F, ZHANG C R, FENG J, et al. Progress of silica aerogel insulation composites[J]. Journal of Materials Science and Engineering, 2009, 27(2):302-306(in Chinese).
[67] PARALE V G, JUNG H N R, HAN W, et al. Improvement in the high temperature thermal insulation performance of Y2O3 opacified silica aerogels[J]. Journal of Alloys and Compounds, 2017, 727:871-878.
[68] XU L, JIANG Y G, FENG J Z, et al. Infrared-opacified Al2O3-SiO2 aerogel composites reinforced by SiC-coated mullite fibers for thermal insulations[J]. Ceramics International, 2015, 41:437-442.
[69] LIU R L, DONG X, XIE S T, et al. Ultralight, thermal insulating, and high-temperature-resistant mullite-based nanofibrous aerogels[J]. Chemical Engineering Journal, 2019, 360:464-472.
[70] MA J, YE F, YANG C P, et al. Heat-resistant, strong alumina-modified silica aerogel fabricated by impregnating silicon oxycarbide aerogel with boehmite sol[J]. Materials & Design, 2017, 131:226-231.
[71] ZU G Q, SHEN J, ZOU L P, et al. Highly thermally stable zirconia/silica composite aerogels prepared by supercritical deposition[J]. Microporous and Mesoporous Materials, 2017, 238:90-96.
[72] ZU G Q, SHEN J, WANG W Q, et al. Heat-resistant, strong titania aerogels achieved by supercritical deposition[J]. The Journal of Supercritical Fluids, 2015, 106:145-151.
[73] 吴晓栋, 崔升,王岭,等. 耐高温气凝胶隔热材料的研究进展[J]. 材料导报, 2015, 29(5):102-108. WU X D, CUI S, WANG L, et al. Advance in research of high temperature resistant aerogel used as insulation material[J]. Materials Review,2015, 29(5):102-108(in Chinese).
[74] FENG J Z, FENG J, JIANG Y G, et al. Ultralow density carbon aerogels with low thermal conductivity up to 2000℃[J]. Materials Letters, 2011, 65:3454-3456.
[75] SUN W, DU A, GAO G H, et al. Graphene-templated carbon aerogels combining with ultra-high electrical conductivity and ultra-low thermal conductivity[J]. Microporous and Mesoporous Materials, 2017, 253:71-79.
[76] XU X, ZHANG Q Q, HAO M L, et al. Double-negative-index ceramic aerogels for thermal superinsulation[J]. Science, 2019, 363:723-727.
[77] BECK R A S, ARNOLD J O, WHITE S, et al. Overview of initial development of flexible ablators for hypersonic inflatable aerodynamic decelerators:AIAA-2011-2511[R]. Reston, VA:AIAA, 2011.
[78] HUGHES S J, DILLMAN R A, STARR B R, et al. Inflatable Re-entry Vehicle Experiment (IRVE) design overview:AIAA-2005-1636[R]. Reston, VA:AIAA, 2005.
[79] DILLMAN R. Inflatable Reentry Vehicle Experiment-3(IRVE-3) project overview & instrumentation[C]//Entry Descent and Landing Workshop. Washington, D.C.:NASA, 2015.
[80] LICHODZIEJEWSKI L, KELLEY C, TUTT B, et al. Design and testing of the inflatable aeroshell for the IRVE-3 flight experiment:AIAA-2012-1515[R]. Reston, VA:AIAA, 2012.
[81] DELCORSO J A, CHEATWOOD F M, BRUCE W E, et al. Advanced high-temperature flexible TPS for inflatable aerodynamic decelerators:AIAA-2011-2510[R]. Reston, VA:AIAA, 2011.
[82] BRUCE W E, MESICK N J, FERLEMANN P G, et al. Aerothermal ground testing of flexible thermal protection systems for hypersonic inflatable aerodynamic decelerators[C]//9th International Planetary Probe Workshop, 2012.
[83] HUGHES S J, CHEATWOOD F M, CALOMINO A M, et al. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology development overview[C]//10th International Planetary Probe Workshop, 2013.
[84] SWANSON G, SMITH B, AKAMINE R, et al. The HIAD orbital flight demonstration instrumentation suite[C]//15th International Planetary Probe Workshop, 2018.
[85] 曹旭, 黄明星,丁弘,等. 充气式再入与减速系统柔性热防护材料的热冲击试验[J]. 载人航天, 2018, 24(1):26-33. CAO X, HUANG M X, DING H, et al. Thermal shock test of flexible thermal protection system for inflatable reentry and descent technology[J]. Manned Spaceflight, 2018, 24(1):26-33(in Chinese).
[86] 曹旭, 廖航,许望晶,等. 充气式减速技术试验器的设计和飞行试验[J]. 载人航天, 2018, 24(6):802-808. CAO X, LIAO H, XU W J, et al.Design and flight test of demonstration aircraft with inflatable reentry and descent technology[J]. Manned Spaceflight, 2018, 24(6):802-808(in Chinese).
[87] 贺卫亮, 才晶晶,汪龙芳,等. 一次发射多次返回的充气式再入飞行器技术[J]. 载人航天, 2011(4):37-42. HE W L, CAI J J, WANG L F, et al.Inflatable reentry technologies research for Single Launching and MultiReentry (SLMR) space transporting system[J]. Manned Spaceflight, 2011(4):37-42(in Chinese).
[88] DILLMAN R. Inflatable reentry vehicles and instrumentation needs[C]//2015 IEEE International Conference on Wireless for Space and Extreme Environments (WiSEE). Piscataway, NJ:IEEE Press, 2015.
[89] SWANSON G, CHEATWOOD N, JOHNSON K, et al. Manufacturing challenges and benefits when scaling the HIAD stacked-torus aeroshell to a 15m-class system[C]//13th International Planetary Probe Workshop, 2016.
[90] VENKATAPATHY E, ARNOLD J, FERNANDEZ I, et al. Adaptive Deployable Entry and Placement Technology (ADEPT):A feasibility study for human missions to mars:AIAA-2011-2608[R]. Reston, VA:AIAA, 2011.
[91] ARNOLD J O, PETERSON K H, YOUNT B C, et al. Thermal and structural performance of woven carbon cloth for adaptive deployable entry and placement technology:AIAA-2013-1370[R]. Reston, VA:AIAA, 2013.
[92] CASSELL A, GORBUNOV S, YOUNT B, et al. System level aerothermal testing for the Adaptive Deployable Entry and Placement Technology (ADEPT)[C]//13th International Planetary Probe Workshop, 2016.
[93] WERCINSKI P. The Adaptable, Deployable Entry and Placement Technology (ADEPT)[C]//14th International Planetary Probe Workshop, 2017.
[94] SMITH B, WILLIAMS J, WERCINSKI P, et al. ADEPT SR-1 development and testing[C]//15th International Planetary Probe Workshop, 2018.
文章导航

/