流体力学与飞行力学

锯齿单元对起落架/舱体耦合噪声抑制试验

  • 梁勇 ,
  • 陈迎春 ,
  • 赵鲲 ,
  • 孙静 ,
  • 卢翔宇 ,
  • 赵昱
展开
  • 1. 西北工业大学 航空学院, 西安 710072;
    2. 中国商用飞机有限责任公司, 上海 201200;
    3. 中国空气动力研究与发展中心 气动噪声控制重点实验室, 绵阳 621000

收稿日期: 2019-01-23

  修回日期: 2019-03-26

  网络出版日期: 2019-04-24

基金资助

国家重点研发计划(2017YFE00123300);国家自然科学基金(11602290)

Test on suppression of aircraft landing gear/bay coupling noise using sawtooth spoiler

  • LIANG Yong ,
  • CHEN Yingchun ,
  • ZHAO Kun ,
  • SUN Jing ,
  • LU Xiangyu ,
  • ZHAO Yu
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Commercial Aircraft Corporation of China, Ltd., Shanghai 201200, China;
    3. Key Laboratory of Aerodynamic Noise Control, China Aerodynamics Research and Development Center, Mianyang 621000, China

Received date: 2019-01-23

  Revised date: 2019-03-26

  Online published: 2019-04-24

Supported by

Natinal Key Research and Development Program of China(2017YFE00123300);National Nature Science Foundation of China(11602290)

摘要

当前中国民用飞机高速发展,噪声排放问题受到广泛关注。在飞机起降阶段,飞行高度较低且处于机场附近,其噪声直接影响到机场地面周围环境。该阶段内起落架噪声占比较大,成为研究的重点。此外,起落架在收放过程中,除自身脱落涡产生的噪声外,当起落架舱门开启时,舱体空腔内产生自持性振荡噪声,与起落架噪声一起形成更为复杂的起落架+舱体耦合噪声,直接影响到整个着陆系统噪声水平,因此研究起落架与舱体耦合噪声产生机理和抑制措施显得尤为必要。以简化的起落架及其舱体为研究对象,提出一种低马赫数(0.2Ma/0.25Ma)条件下,利用前缘锯齿扰流单元对起落架/舱体耦合噪声进行抑制的方法,并在0.55 m×0.4 m航空声学风洞进行试验验证。首先,从起落架及其舱体耦合噪声产生原因进行分析,分别明确起落架和舱体在耦合噪声各个频段的贡献作用。随后,在舱体空腔前缘安装锯齿扰流单元,以改变自由来流状态,验证降噪措施;同时采用参数化研究方法,研究锯齿扰流单元不同偏角对降噪效果的影响。最后,将起落架模型安装于舱体空腔内,分析锯齿扰流单元对耦合噪声的抑制能力。研究结果表明,锯齿形扰流单元对舱体腔体噪声与起落架/舱体耦合噪声具有明显降低作用,在本试验条件下,30°安装角最佳。预期成果可以应用于起落架/舱体耦合降噪。

本文引用格式

梁勇 , 陈迎春 , 赵鲲 , 孙静 , 卢翔宇 , 赵昱 . 锯齿单元对起落架/舱体耦合噪声抑制试验[J]. 航空学报, 2019 , 40(8) : 122932 -122932 . DOI: 10.7527/S1000-6893.2019.22932

Abstract

With the rapid development of aviation industry, aircraft noise emission has attracted an increasing amount of attention. During take-off and landing, the aircraft flies at a low altitude and is at the vicinity of the airport, causing substantial noise pollution to the surrounding area. As a main contributor to the total noise production, the landing gear system has become a key research topic. In addition to the "self-noise" of the landing gear, the flow-induced oscillation within the landing gear bay cavity can also cause acoustic radiation during dropping or retracting the landing gear, significantly influencing the noise level of the undercarriage system. As such, it is necessary to explore the underlying mechanism and find an effective way to suppress the noise level. Concentrating on a simplified model of landing gear/bay assembly, this study develops a noise control approach at 0.2Ma and 0.25Ma, namely sawtooth spoiler is used to suppress the coupling noise induced by the landing gear/bay. All experimental tests are conducted in the 0.55 m×0.4 m aeroacoustic wind tunnel. Firstly, the respective contribution of the landing gear and the bay to the coupling noise is characterized. Then, the sawtooth spoiler is mounted to the leading edge of the pure cavity to perturb the flow separation and cavity pressure oscillation. Through parametric study, the approaches of noise control are investigated and the effects of sawtooth inclination angle on the noise level are analyzed. Finally, the landing gear is installed in the bay cavity, and the spoiler's ability to suppress the coupling noise is tested. The results show that all cases with the sawtooth leading edge spoiler can attenuate the noise level. Moreover, under the conditions of this study, when the inclination angle is 30°, the optimal reduction is achieved. It is expected that the results of this research can be implemented in the future engineering practice to suppress the landing gear/bay coupling noise level.

参考文献

[1] ROSSITER J E. Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds:3438[R]. London:Aeronautical Research Council, 1966:1-36.
[2] SHAW L, CLARK R, TALMADGE D. F-111 generic weapons bay acoustic environment[J]. Journal of Aircraft, 1988, 25(2):147-153.
[3] HELLER H H, HOLMES D, COVERT E E. Flow-induced pressure oscillations in shallow cavities[J]. Journal of Sound and Vibration, 1971, 18(4):545-553.
[4] PLENTOVICH E B, TRACY M B. Experimental cavity pressure measurements at subsonic and transonic speeds. Static-pressure results:3358[R]. Washington, D.C.:Langley Research Center, 1993:5-13.
[5] TRACY M B, PLENTOVICH E B. Cavity unsteady-pressure measurements at subsonic and transonic speeds:3669[R]. Washington, D.C.:Langley Research Center, 1997:4-9.
[6] 张强. 流动诱导空腔振荡频率方程的改进[J]. 振动工程学报, 2004, 17(1):53-57. ZHANG Q. Development of the frequency equation used for prediction of fluid induced pressure oscillation in cavities[J]. Journal of Vibration Engineering, 2004, 17(1):53-57(in Chinese).
[7] 朱幼君. 管道空腔流声耦合振荡及压电振子流动控制技术的研究[D]. 上海:上海交通大学, 2010:36-39. ZHU Y J. Research on acoustic oscillation over the duct cavity and suppression with piezoelectric vibrator[D].Shanghai:Shanghai Jiao Tong University,2010:36-39(in Chinese).
[8] ZHAO K, ALIMOHAMMADI S, OKOLO P N. Aerodynamic noise reduction using dual-jet planar air curtains[J]. Journal of Sound and Vibration, 2018, 432:192-212.
[9] ZHAO K, YANG X, OKOLO P N. Use of plane jet for flow-induced noise reduction of tandem rods[J]. Chinese Physics B, 2016, 25(6):64301.
[10] SADDINGTON A J, THANGAMANI V, KNOWLES K. Comparison of passive flow control methods for a cavity in transonic flow[J]. Journal of Aircraft, 2016, 53(5):1439-1447.
[11] LUO K, ZHU W, XIAO Z. Investigation of spectral characteristics by passive control methods past a supersonic Cavity[J]. AIAA Journal, 2018, 56(7):2669-2686.
[12] 杨党国, 李建强,梁锦敏. 基于CFD和气动声学理论的空腔自激振荡发声机理[J]. 空气动力学学报, 2010,28(6):724-730. YANG D G, LI J Q, LIANG J M. Sound generation induced by self-sustained oscillations inside cavities based on CFD and aeroacoustic theory[J]. Acta Aerodynamica Sinica, 2010, 28(6):724-730(in Chinese).
[13] 杨党国, 祝静,李建强,等. 跨超声速开式空腔流激振荡模态预估分析[J]. 空气动力学学报, 2014,32(3):369-375. YANG D G, ZHU J, LI J Q,et al. Prediction and analysis of flow oscillation modes inside open cavities at transonic or supersonic speeds[J]. Acta Aerodynamica Sinica, 2014, 32(3):369-375(in Chinese).
[14] 杨党国, 吴继飞,罗新福. 零质量射流对开式空腔气动噪声抑制效果分析[J]. 航空学报, 2011, 32(6):1007-1015. YANG D G, WU J F, LUO X F. Investigation on suppression effect of zero-net-mass-flux jet on aerodynamic noise inside open cavities[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(6):1007-1015(in Chinese).
[15] 赵小见, 赵磊,冯峰,等. 某空腔低速流动噪声风洞试验[J]. 航空学报, 2015, 36(7):2145-2154. ZHAO X J, ZHAO L, FENG F, et al. Wind tunnel test into noise induced by low-speed cavity flow[J]. Acata Aeronautics et Astronautics Sinica, 2015, 36(7):2145-2154(in Chinese).
[16] HELLER H H, DOBRZYNSKIF W M. Sound radiation from aircraft wheel-well/landing-gear configurations[J]. Journal of Aircraft, 1977, 14(8):768-774.
[17] DOBRZYNSKI W, CHOW L, GUION P. A European study on landing gear airframe noise sources[C]//6th Aeroacoustics Conference and Exhibit.Reston,VA:AIAA, 2000.
[18] DOBRZYNSKI W M, SCHÖNING B, CHOW L C,et al. Design and testing of low noise landing gears[J]. International Journal of Aeroacoustics, 2006, 5(3):233-262.
[19] 龙双丽, 聂宏,薛彩军,等. 飞机起落架气动噪声特性仿真与试验[J]. 航空学报, 2012, 33(6):1002-1013. LONG S L, NIE H, XUE C J, et al. Aerodynamic noise simulation of commercial aircraft landing gear[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2012, 33(6):1002-1013(in Chinese).
[20] 刘兴强, 黄文超,李红丽. 某型飞机前起落架噪声特性研究[J]. 西北工业大学学报, 2016, 34(3):456-459. LIU X Q, HUANG W C, LI H L. Research on noise characteristics for a nose landing gear[J]. Journal of Northwestern Polytechnical University, 2016, 34(3):456-459(in Chinese).
[21] 王骁原, 郭昊,邢宇,等. LAGOON起落架缩比模型机轮空腔发声机理试验[J]. 航空学报, 2017, 38(5):120549. WANG X Y, GUO H, XING Y, et al. Mechanism test on aero acoustic characteristics of LAGOON landing gear wheel cavitie[J]. Acta Aeronautica et Astronautica Sinica, 38(5):120549(in Chinese).
[22] LI Y, SMITH M, ZHANG X. Measurement and control of aircraft landing gear broadband noise[J]. Aerospace Science and Technology, 2012, 23(1):213-223.
[23] 刘兴强, 张洪涛,黄文超,等. 某型飞机前起落架降噪试验[J]. 科学技术与工程, 2014, 14(11):72-75. LIU X Q, ZHANG H T, HUANG W C, et al. Noise reduction experiment of an aircraft nose landing gear[J]. Science Technology and Engineering, 2014, 14(11):72-75(in Chinese).
[24] DONALD B B, RICHARD E H. Landing gear and cavity noise prediction:NASA CR-2714[R]. Washington, D.C.:Langley Research Center, 1976:2-3.
[25] 郭知飞,刘沛清,郭昊.起落架噪声与空腔噪声耦合作用的数值研究[C]//2016年度全国气动声学学术会议论文摘要集.北京:北京航空航天大学教育部重点实验室, 2016, 145-151. GUO Z F, LIU P Q, GUO H. Numerical study on coupling effect of landing gear and bay noise[C]//Proceeding of the 2016 National Aeroacoustic Conference. Beijing:Key Laboratory of Fluid Mechanics (Beihang University), Ministry of Education, 2016:145-151(in Chinese).
文章导航

/