材料工程与机械制造

基于优化STD法的大飞机垂尾装配界面精加工过程模态参数识别

  • 赵雄 ,
  • 樊伟 ,
  • 郑联语 ,
  • 刘新玉 ,
  • 安泽武 ,
  • 杨森
展开
  • 1. 北京航空航天大学 机械工程及自动化学院, 北京 100083;
    2. 上海飞机制造有限公司 航空制造技术研究所, 上海 201324

收稿日期: 2019-02-14

  修回日期: 2019-03-12

  网络出版日期: 2019-04-19

基金资助

国家自然科学基金(51775024);民用飞机专项科研项目(MJZ-2016-G-62);航空高端装备智能制造技术重点实验室项目;数字化设计与制造北京市重点实验室项目

Modal parameter identification of finishing assembly interface of vertical tail section of large aircraft based on optimized STD method

  • ZHAO Xiong ,
  • FAN Wei ,
  • ZHENG Lianyu ,
  • LIU Xinyu ,
  • AN Zewu ,
  • YANG Sen
Expand
  • 1. School of Mechanical Engineering and Automation, Beihang University, Beijing 100083, China;
    2. Institute of Aeronautical Manufacturing Technology, Shanghai Aircraft Manufacturing Co., Ltd, Shanghai 201324, China

Received date: 2019-02-14

  Revised date: 2019-03-12

  Online published: 2019-04-19

Supported by

National Natural Science Foundation of China(51775024); Civil Airplane Technology Development Program (MJZ-2016-G-62); Key Laboratory of Smart Manufacturing for High-end Aerospace Products; Beijing Key Laboratory of Digital and Manufacturing Program

摘要

为减小大飞机垂尾装配界面精加工过程中产生的加工振动对其精加工质量的影响,需掌握装配界面加工过程的动力学特性,而动力学特性与其模态参数密切相关。因此,为获得装配界面各阶模态参数,针对其动态精加工过程,提出了一种优化STD环境激励下结构模态参数识别方法。该方法首先由装配界面的实测加工振动数据构造Toeplitz矩阵,并将其作为STD法的输入,进而求出装配界面各阶次模态参数,并构成模态参数下三角矩阵。然后利用模态置信因子及模态保证准则选出阶次相对稳定的模态参数作为装配界面的真实模态参数。最后,通过切削实验和锤击测试验证优化STD法的正确性和有效性。将锤击实验模态结果作为装配界面的模态参数测量参考值,以一阶模态频率识别结果为例,该方法相比于传统STD法和SSI法,识别精度分别提高了12.71%和3.82%;同理其余各阶模态参数识别精度均有不同程度的提高。通过优化STD法可准确高效地获得装配界面的模态参数,为其精加工工艺参数的合理选择提供了理论依据和技术支持。

本文引用格式

赵雄 , 樊伟 , 郑联语 , 刘新玉 , 安泽武 , 杨森 . 基于优化STD法的大飞机垂尾装配界面精加工过程模态参数识别[J]. 航空学报, 2019 , 40(10) : 422950 -422950 . DOI: 10.7527/S1000-6893.2019.22950

Abstract

To reduce the impact of machining vibration on the machining quality of the assembly interface of large aircraft in finishing, it is necessary to understand the dynamic characteristics and the modal parameters of the assembly interface. Hence, an optimized Space Time Domain (STD) method is proposed to identify the modal parameters during the dynamic finish machining. Firstly, a Toeplitz matrix is generated by the measured machining vibration data of the assembly interface and is treated as the input of the STD method. Secondly, the relative stable modal parameters are selected as the modal parameters of the assembly interface in terms of the modal confidence factor and the Modal Assurance Criterion (MAC). Finally, the correctness and effectiveness of the optimized STD method are validated through impact tests and cutting experiments. In detail, the results of the impact test are regarded as the referenced modal parameters of the assembly interface. Taking the 1st-order modal identification result as an example, the modal identification accuracy of the optimized STD method is improved by 12.7% and 3.82% compared with the traditional STD and SSI methods. The identification accuracy of the modal parameters of the rest orders can also be improved to a certain extent as well. Therefore, the modal parameters of the assembly interface can be accurately and efficiently identified via the optimized STD method, which can theoretically and technically support the reasonable selection of the finish machining parameters.

参考文献

[1] LEI P, ZHENG L. An automated in-situ alignment approach for finish machining assembly interfaces of large-scale components[J]. Robotics and Computer-Integrated Manufacturing, 2017, 46:130-143.
[2] 陈仁良, 李攀, 吴伟, 等. 直升机飞行动力学数学建模问题[J]. 航空学报, 2017, 38(7):520915. CHEN R L, LI P, WU W, et al. A review of mathematical modeling of helicopter flight dynamics[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):520915(in Chinese).
[3] WAN X J, HUA L, WANG X F, et al. An error control approach to tool path adjustment conforming to the de-formation of thin-walled workpiece[J]. International Journal of Machine Tools & Manufacture, 2011, 51(3):221-229.
[4] 杨毅青, 刘强, Muoa Jokin. 基于实验模态分析的集中参数法建模[J]. 振动、测试与诊断, 2010, 30(6):621-625, 707. YANG Y Q, LIU Q, MUOA J. Investigation of lumped modal based on experimental modal analysis[J]. Journal of Vibration, Measurement & Diagnosis, 2010, 30(6):621-625, 707(in Chinese).
[5] 刘宇飞, 辛克贵, 樊健生, 等. 环境激励下结构模态参数识别方法综述[J]. 工程力学, 2014, 31(4):46-53. LIU Y F, XIN K G, FAN J S, et al. A review of structure modal identification methods through ambient excitation[J]. Engineering Mechanics, 2014, 31(4):46-53(in Chinese).
[6] 史东锋, 许锋, 申凡, 等. 结构在环境激励下的模态参数辨识[J]. 航空学报, 2004, 25(2):125-129. SHI D F, XU F, SHEN F, et al. Modal parameter identification of structure in ambient excitation[J]. Acta Aeronautica et Astronautica Sinica, 2004, 25(2):125-129(in Chinese).
[7] 徐辰奎, 刘国明, 杨亮. 基于随机减量和时域ITD法的重力坝模态参数识别[J]. 水利与建筑工程学报, 2015(6):178-182. XU C K, LIU G M, YANG L. Modal parameter identification of gravity dams based on ITD method and random decrement technique[J]. Journal of Water Resources and Architectural Engineering, 2015(6):178-182(in Chinese).
[8] 孟昭博, 胡博森, 赵庆双, 等. 基于STD法的光岳楼木结构自振频率计算[J]. 聊城大学学报(自然科学版), 2015, 28(4):37-41. MENG Z B, HU B S, ZHAO Q S, et al. Natural frequency calculation of guangyue tower based on the method of STD[J]. Journal of Liaocheng (Natural Science), 2015, 28(4):37-41(in Chinese).
[9] JUANG J N. Applied system identification[M]. Englewood Ciffs, New Jersey:Prentice-Hall Inc, 1994.
[10] 付志超, 仲维国, 陈志平, 等. 大展弦比柔性机翼的结构动力学特性试验研究[J]. 航空学报, 2013, 34(9):2177-2184. FU Z C, ZHONG W G, CHEN Z P, et al. Experimental study on structural dynamic characteristics of flexible high-aspect-ratio wings[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2177-2184(in Chinese).
[11] 张永祥, 刘心, 褚志刚, 等. 基于随机子空间法的模态参数自动提取[J]. 机械工程学报, 2018, 54(9):187-194. ZHANG Y X, LIU X, CHU Z G, et al. Autonomous modal parameter extraction based on stochastic subspace identification[J]. Journal of Mechanical Engineering, 2018, 54(9):187-194(in Chinese).
[12] BOONYAPINYO V, JANESUPASAEREE T. Data-driven stochastic subspace identification of flutter derivatives of bridge decks[J]. Journal of Wind Engineering and Industrial Aerodynamic, 2010, 98(12):784-799.
[13] 李团结, 刘伟萌, 唐雅琼, 等. 一种改进的识别结构模态参数的随机子空间法[J]. 西安电子科技大学学报(自然科学版), 2017, 44(6):26-30. LI T J, LIU W M, TANG Y Q, et al. Improved stochastic subspace method for identification structural modal parameter[J]. Journal of Xidian University (Natural Science), 2017, 44(6):26-30(in Chinese).
[14] YANG Y, YANG H, LI P, et al. A roller bearing fault diagnosis method based on the improved ITD and RRVPMCD[J]. Measurement, 2014, 55:255-264.
[15] 杜飞平, 谭永华, 陈建华. 基于ITD和STD的液体火箭发动机模态参数辨识方法[J]. 火箭推进, 2012, 38(3):34-39. DU F P, TAN Y H, CHEN J H. ITD and STD based identification for modal parameters of liquid rocket engine[J]. Journal of Rocket Propulsion, 2012, 38(3):34-39(in Chinese).
[16] 杨佑发, 李帅, 李海龙. 环境激励下结构模态参数识别的改进ITD法[J]. 振动与冲击, 2014, 33(1):194-199. YANG Y F, LI S, LI H L. Improved ITD method for structure modal parameter identification under ambient excitation[J]. Journal of Vibration and Shock, 2014, 33(1):194-199(in Chinese).
[17] 张小宁, 段忠东. 一种自动识别结构模态参数的随机子空间方法[J]. 振动工程学报, 2017, 30(4):542-548. ZHANG X N, DUAN Z D. A stochastic subspace identification method for automotive identification of structural modal parameters[J]. Journal of Vibration Engineer, 2017, 30(4):542-548(in Chinese).
[18] 李树侠, 朴松花. 钛合金材料的机械加工工艺综述[J]. 飞航导弹, 2007(7):57-61. LI S X, PIAO S H. A review of mechanical processing technology of titanium alloy materials[J]. Aerodynamic Missiles Journal, 2007(7):57-61(in Chinese).
文章导航

/