固体力学与飞行器总体设计

复合材料帽形加筋壁板剪切屈曲性能

  • 汪厚冰 ,
  • 林国伟 ,
  • 韩雪冰 ,
  • 李新祥
展开
  • 中国飞机强度研究所 全尺寸飞机结构静力/疲劳航空科技重点实验室, 西安 710065

收稿日期: 2019-01-02

  修回日期: 2019-03-18

  网络出版日期: 2019-04-17

基金资助

民机科研项目(MJ-2015-F-038)

Shear buckling performance of composite hat-stiffened panels

  • WANG Houbing ,
  • LIN Guowei ,
  • HAN Xuebing ,
  • LI Xinxiang
Expand
  • Aeronautics Science and Technology Key Laboratory of Full Scale Aircraft Structure and Fatigue, Aircraft Strength Research Institute of China, Xi'an 710065, China

Received date: 2019-01-02

  Revised date: 2019-03-18

  Online published: 2019-04-17

Supported by

Civil Aircraft Scientific Research Project (MJ-2015-F-038)

摘要

对碳纤维增强树脂基复合材料(CFRP)帽形加筋壁板的剪切屈曲进行了试验、理论分析和数值模拟。根据线弹性理论推导了复合材料帽形加筋壁板蒙皮的应变分布;针对复合材料帽形加筋壁板3种蒙皮板条单元截取宽度和两种边界条件,利用理论公式和半经验公式计算了加筋壁板的剪切屈曲载荷;利用特征值法和几何非线性法进行了剪切屈曲模拟分析;将得到的分析结果与试验结果进行了对比。结果表明:根据线弹性理论得到的蒙皮应变分布与试验结果一致,验证了推导结果的正确性;选择合适的边界条件和蒙皮板条单元截取宽度,利用理论公式和半经验公式可得到加筋壁板较准确的屈曲载荷;利用特征值法得到的屈曲载荷较试验屈曲载荷高,选择合适的几何初始缺陷系数利用几何非线性分析方法可模拟复合材料帽形加筋壁板在剪切载荷作用下的屈曲过程。

本文引用格式

汪厚冰 , 林国伟 , 韩雪冰 , 李新祥 . 复合材料帽形加筋壁板剪切屈曲性能[J]. 航空学报, 2019 , 40(8) : 222889 -222889 . DOI: 10.7527/S1000-6893.2019.22889

Abstract

The shear buckling of the Carbon Fiber Reinforced Polymer composite (CFRP) hat-stiffened panels is studied through experiment, theoretical analysis, and numerical simulation. Composite hat-stiffened panels are tested via the distributed load technique. The strain distribution of the skin of composite hat-stiffened panels is deduced based on the composite linear elasticity theory under shear load. Theoretical and semi-experiential approaches are proposed to predict the initial buckling load of hat-stiffened panels with two boundary conditions and three strip widths of skin. Finite element analysis is used to simulate shear buckling with the eigenvalue analytical method and the geometrical nonlinearity method. The analytical results and experimental results are compared. The results show that the strain distribution of skin of panels and test data are consistent, which verifies the effectiveness of strain formula of skin. Adopting theoretical and semi-experiential approaches, a relatively accurate shear buckling load can be obtained with proper boundary conditions and strip widths of the skin. The buckling load derived through the eigenvalue analytical method is higher than the experimental load. The buckling process can be simulated with appropriate initial imperfection through the geometrical nonlinearity method.

参考文献

[1] 马文博, 余康. 民用飞机中后机身壁板结构设计分析[J]. 中国科技信息, 2016(12):85-86. MA W B, YU K. Design and analysis on middle and rear fuselage panel of civil aircraft[J]. China Science and Technology Information, 2016(12):85-86(in Chinese).
[2] ZIMMERMANN R, ROLFES R. POSICOSS-improved postbuckling simulation for design of fibre composite stiffened fuselage structures[J]. Composite Structures, 2006, 73(2):171-174.
[3] DEFENHARDT R, ROLFES R, ZIMMERMANN R, et al. COCOMAT-improved material exploitation of composite airframe structures by accurate simulation of postbuckling and collapse[J]. Composite Structures, 2006, 73(2):175-178.
[4] GHILAI G, FELDMAN E, DAVID A. COCOMAT design and analysis guidelines for CFRP-stiffened panels[J]. International Journal of Structural Stability and Dynamics, 2010, 10(4):917-926.
[5] MO Y M, GE D Y, ZHOU J F. Experiment and analysis of hat-stringer-stiffened composite curved panels under axial compression[J]. Composite Structures, 2015, 123:150-160.
[6] GAL E, LEVY R, ABRAMOVICH H, et al. Buckling analysis of composite panels[J]. Composite Structures, 2006, 73(2):179-185.
[7] BISAGNI C, CORDISCO P. An experimental investigation into the buckling and post-buckling of CFRP shells under combined axial and torsion loading[J]. Composite Structures, 2003, 60(4):391-402.
[8] ZIMMERMANN R, KLEIN H, KLING A. Buckling and postbuckling of stringer-stiffened fibre composite curved panels tests and computations[J]. Composite Structures, 2006, 73(2):150-161.
[9] MÖCKER T, REIMERDES H G. Postbuckling simulation of curved stiffened composite panels by the use of strip elements[J]. Composite Structures, 2006, 73(2):237-243.
[10] LAUTERBACH S, ORIFICI A C, WAGNER W, et al. Damage sensitivity of axially loaded stringer-stiffened curved CFRP panels[J]. Composite Science Technology, 2010, 70(2):240-248.
[11] 臧伟锋, 董登科,张海英. 机身壁板内压载荷强度试验方法研究[J]. 机械强度, 2015, 37(5):972-977. ZANG W F, DONG D K, ZHANG H Y. Research on test method of fuselagepanel subjected to internal pressure load[J]. Journal of Mechanical Strength, 2015, 37(5):972-977(in Chinese).
[12] 孙为民, 童明波,董登科,等. 民机大型加筋曲板在剪切载荷下失效破坏试验[J]. 南京航空航天大学学报, 2008, 40(4):521-525. SUN W M, TONG M B, DONG D K,et al. Failure damage experiments of stiffened panels subjected to shear loading[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2008, 40(4):521-525(in Chinese).
[13] WAGNER H.Flat sheet metal girder with very thin metal web-Part I:General theories and assumptions:NACA-TM-604[R]. Washington, D.C.:NACA, 1931.
[14] MURPHY A, PRICE M, LYNCH C, et al. The computational post-buckling analysis of fuselage stiffened panels loaded in shear[J]. Thin-Walled Structures, 2005, 43(9):1455-1474.
[15] ROTHWELL A. An experimental investigation of the post-buckled efficiency of Z-section stringer-skin panels[J]. The Aeronautical Journal, 1981, 85(840):29-33.
[16] CRICRI G, PERRELLA M, CALI C. Experimental and numerical post-buckling analysis of thin aluminium aeronautical panels under shear load[J]. Strain, 2014, 50(3):208-222.
[17] 冯宇, 何宇廷,邵青,等. 复合材料加筋板剪切屈曲特性研究[J]. 机械强度, 2013, 35(3):288-291. FENG Y, HE Y T, SHAO Q,et al. Study on shear stability performance of composite stiffened panel[J]. Journal of Mechanical Strength, 2013, 35(3):288-291(in Chinese).
[18] JUNG W Y, HAN S C. Shear buckling responses of laminated composite shells using a modified 8-node ANS shell element[J]. Composite Structures, 2014, 109:119-129.
[19] GE D Y, MO Y M, HE B L, et al. Experimental and numerical investigation of stiffened composite curved panel under shear and in-plane bending[J]. Composite Structures, 2016, 137:185-195.
[20] CORDISCO P, BISAGNI C. Cyclic buckling tests under combined compression and shear on composite stiffened panels[J]. AIAA Journal, 2009, 47(12):2879-2893.
[21] ABRAMOVICH H, WELLER T, BISAGNI C. Buckling behavior of composite laminated stiffened panels under combined shear-axial compression[J]. Journal of Aircraft, 2008, 45(2):402-412.
[22] 柴亚南, 李崇,王力立,等. 一种能够均匀施加轴向压缩和剪切载荷的试验装置:ZL 201210528616.7[P]. 2015-04-29. CHAI Y N, LI C, WANG L L, et al. A test fixture of uniform load of axial compress and shear:ZL 201210528616.7[P]. 2015-04-29(in Chinese).
[23] 杨晓宇, 里程遥,李翰飞. 基于有限元法的机械连接静力分析的研究[J]. 北京石油化工学院学报, 2009, 17(1):15-18. YANG X Y, LI C Y, LI H F. Research on the static analysis of the mechanical connection based on FEM[J]. Journal of Beijing Institute of Petro-Chemical Technology, 2009, 17(1):15-18(in Chinese).
[24] 王武, 陶华,刘风雷,等. 复合材料多排螺栓连接钉载分配的研究[J]. 绝缘材料, 2006, 28(1):28-32. WANG W, TAO H, LIU F L,et al. Research on pin load distribution of multiple bolt-jointed composite laminate[J]. Insulating Materials, 2006, 28(1):28-32(in Chinese).
[25] 赵美英, 阎国良,顾亦磊,等. 复合材料层板钉群连接载荷分配计算方法研究[J]. 航空计算技术, 2006, 36(3):97-101. ZAHO M Y, YAN G L, GU Y L, et al. Design of computation methods of the load distribution in composite fastener group joints[J]. Aeronautical Computing Technique, 2006, 36(3):97-101(in Chinese).
[26] MCCARTHY C T,GRAY P J. An analytical model for the prediction of load distribution in highly torqued multi-bolt composite joints[J]. Composite Structures, 2011, 93(2):287-298.
[27] 张明星. T800碳纤维复合材料混合连接层合板钉载分布及有限元计算[J]. 玻璃钢/复合材料, 2011, 62(5):62-66. ZHANG M X. Load distribution and finite element calculation of T800 carbon fiber hyper joints composite laminates[J]. Fiber Reinforced Plastics/Composites, 2011, 62(5):62-66(in Chinese).
[28] MCCARTHY M A,MCCARTHY C T, PADHI G S. A simple method for determining the effects of bolt-hole clearance on load distribution in single-column multi-bolt composite joints[J]. Composite Structures, 2006, 73(1):78-87.
[29] 中国航空研究院. 复合材料结构稳定性分析指南[M]. 北京:航空工业出版社,2002:130-141. Chinese Aeronautical Establishment. Stability handbook of composites structure design[M]. Beijing:Aviation Industry Press, 2002:130-141(in Chinese).
[30] UPENDRA K M, AKHIL U. Buckling of laminated composite stiffened panels subjected to in-plane shear:A parametric study[J]. Thin-Walled Structures, 2006, 44(3):354-361.
[31] LOUGHLAN J. The influence of bend-twist coupling on the shear buckling response of thin laminated composite plates[J]. Thin-Walled Structures, 1999, 34(2):97-114.
[32] SIMULIA. Abaqus analysis user's manual 6.11[M]. Providence, RI:SIMULIA, 2011.
[33] MEYER-PIENING H R, FARSHAD M, GEIER B, et al. Buckling loads of CFRP composite cylinders under combined axial and torsion loading-Experiments and computations[J]. Composite Structures, 2001, 53(4):427-435.
[34] REITINGER R, RAMM E. Buckling and imperfection sensitivity in the optimization of shell structure[J]. Thin-Walled Structures, 1995, 23(1-4):159-177.
[35] 孙伟, 关志东,黎增山,等. 纤维增强复合材料薄壁圆管扭转失效分析[J].复合材料学报, 2016, 33(10):2187-2196. SUN W, GUAN Z D, LI Z S,et al. Failure analysis of fiber reinforced composite thin-walled circular tubes under torsion load[J]. Acta Materiae Compositae Sinica, 2016, 33(10):2187-2196(in Chinese).
文章导航

/