电子电气工程与控制

直升机旋翼电磁特性模拟新技术

  • 郭杰 ,
  • 殷红成 ,
  • 叶尚军 ,
  • 满良 ,
  • 贾崎
展开
  • 1. 电磁散射重点实验室, 北京 100854;
    2. 中国航天科工二院, 北京 100854;
    3. 浙江大学 航空航天学院, 杭州 310027

收稿日期: 2018-10-17

  修回日期: 2018-11-26

  网络出版日期: 2019-03-13

基金资助

国家自然科学基金(61490695);浙江省重点研发计划(2017C01044)

Novel technology for electromagnetic characteristic simulation of helicopter blades

  • GUO Jie ,
  • YIN Hongcheng ,
  • YE Shangjun ,
  • MAN Liang ,
  • JIA Qi
Expand
  • 1. Science and Technology on Electromagnetic Scattering Laboratory, Beijing 100854, China;
    2. The Second Academy of CASIC, Beijing 100854, China;
    3. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China

Received date: 2018-10-17

  Revised date: 2018-11-26

  Online published: 2019-03-13

Supported by

National Natural Science Foundation of China (61490695); Key R&D Program of Zhejiang Province (2017C01044)

摘要

针对直升机电磁散射特性无源模拟的技术瓶颈,基于直升机桨叶的结构特点和雷达回波特性,提出一种基于小散射源阵列的新型旋翼散射特性增强技术,通过阵列合成公式和数值仿真分析了散射源阵列的雷达散射截面(RCS)的峰值大小、波峰数目、波峰位置、主瓣宽度等特性。同时,将该技术应用于国内某型无人直升机旋翼,设计了原理样机,并在微波暗室里对其电磁特性进行测试。测试结果与理论仿真结果吻合较好,验证了本方案的有效性和可行性,为试验模拟技术提供有力支持。

本文引用格式

郭杰 , 殷红成 , 叶尚军 , 满良 , 贾崎 . 直升机旋翼电磁特性模拟新技术[J]. 航空学报, 2019 , 40(7) : 322732 -322732 . DOI: 10.7527/S1000-6893.2019.22732

Abstract

Aiming at the technical bottleneck of the passive simulation of helicopter electromagnetic scattering characteristics and based on the structure and electromagnetic characteristics of helicopter blades, this paper proposes a novel scattering characteristics augmented technology of blades that is based on small scattering source array. The peak value, the number of peaks, the position of the peaks, and the beamwidth of mainlobe of scattering source array's Radar Cross Section (RCS) are analyzed by array synthesis formula and numerical simulation. Moreover, for the application to the rotor of a domestic unmanned helicopter, a prototype of blade augmenter is designed and tested in a microwave anechoic chamber. The experimental results are in good agreement with the simulation results, verifying the validity and feasibility of the scheme, and greatly supporting the simulation technology.

参考文献

[1] 屈也频, 金惠明, 何肇雄. 航母舰载机装备体系及指标论证方法[J]. 航空学报, 2018, 39(5):221675. QU Y P, JIN H M, HE Z X. Carrier-based aircraft equipment system-of-systems and index demonstration method[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):221675(in Chinese).
[2] 李建波. 复合式直升机技术发展分析[J]. 南京航空航天大学学报, 2016, 4(2):149-158. LI J B. Progress of compound helicopter technology[J]. Journal of Nanjing University of Aeronautics and Astronautics, 2016, 4(2):149-158(in Chinese).
[3] 丁玮, 欧渊, 石根柱, 等. 美国海军空中靶标发展研究[J]. 舰船科学技术, 2018, 40(21):170-173. DING W, OU Y, SHI G Z, et al. Research on aerial target development of U.S. Navy[J]. Ship Science and Technology, 2018, 40(21):170-173(in Chinese).
[4] 宋招枘, 赵敬超, 张华. 军用直升机隐身特性分析研究[J]. 科技创新与应用, 2018(5):1-4. SONG Z R, ZHAO J C, ZHANG H. Analysis of stealth characteristics of military helicopters[J]. Technology Innovation and Application, 2018(5):1-4(in Chinese).
[5] KERHO M F, ANSELL P J, D'URSO S, et al. Design, analysis, and evaluation of a propulsive wing concept[C]//AIAA Applied Aerodynamics Conference. Reston,VA:AIAA, 2016:1-24.
[6] BERNDT R J. Aircraft micro-Doppler feature extraction from high range resolution profiles[C]//Radar Conference. Piscataway, NJ:IEEE Press, 2016:457-462.
[7] 王菁, 刘战合, 田秋丽, 等. 桨叶对直升机电磁散射特性的影响分析[J]. 航空计算技术, 2018, 48(1):49-53. WANG J, LIU Z H, TIAN Q L, et al. Analysis of influence of blade on electromagnetic scattering characteristics of helicopter[J]. Aeronautical Computing Technique, 2018, 48(1):49-53(in Chinese).
[8] 叶少波, 熊浚江. 直升机旋翼桨叶动态RCS特性研究[J]. 航空学报, 2006, 27(5):816-822. YE S B, XIONG J J. Dynamic RCS behavior of helicopter rotating blades[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(5):816-822(in Chinese).
[9] 李程. 高速直升机RCS计算及结构参数影响分析[D]. 南京:南京航空航天大学, 2016. LI C. RCS calculations on high-speed helicopter and effect analyses of structural parameters[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2016(in Chinese).
[10] 蒋相闻, 招启军, 孟晨. 直升机旋翼桨叶外形对雷达特征信号的影响研究[J]. 航空学报, 2014, 35(11):3123-3136. JIANG X W, ZHAO Q J, MENG C. Effect investigations of helicopter rotor blade shape on its radar signal characteristics[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):3123-3136(in Chinese).
[11] POULIGUE P, LUCAS L, MULLER F, et al. Calculation and analysis of electromagnetic scattering by helicopter ratating blades[J]. IEEE Transactions on Anteannas and Propagataion, 2002, 50(10):1396-1408.
[12] CLEMENTE C, SORAGHAN J J. GNSS-based passive bistatic radar for micro-Doppler analysis of helicopter rotor blades[J]. IEEE Transactions on Aerospace and Electronic Systems, 2014, 50(1):491-500.
[13] AMOR-MARTIN A, GARCIA-DONORO D, GARCIA-CASTILLO L E, et al. A finite element mesh truncation technique for scattering and radiation problems in HPC environments[C]//Computing & Electromagnetics International Workshop. Piscataway, NJ:IEEE Press, 2017:33-34.
[14] KARABAYIR O, YUCEDAG S M, YUCEDAG O M, et al. Micro-Doppler-based classification study on the detections of aerial targets and wind turbines[C]//Radar Symposium. Piscataway, NJ:IEEE Press, 2016:1-4.
[15] ZHOU Z Y, HUANG J, YI M X. Comprehensive optimization of aerodynamic noise and radar stealth for helicopter rotor based on Pareto solution[J]. Aerospace Science and Technology, 2018, 82-83:607-619.
[16] CHEN V C. Radar signatures of rotor blades[C]//Proceedings of SPIE on Radar Processing. Bellingham, WA:SPIE, 2001:63-70.
[17] 贺治华. 直升机的雷达回波仿真研究[J]. 计算机仿真, 2008, 25(8):36-39. HE Z H. Simulation of radar echo from helicopter[J]. Computer Simulation, 2008, 25(8):36-39(in Chinese).
[18] 林刚. 直升机雷达回波的动态特性分析[J]. 火力与指挥控制, 2007, 32(2):83-86. LIN G. Analysis of statistical characteristic of helicopter echo[J]. Fire Control and Command Control, 2007, 32(2):83-86(in Chinese).
[19] 朱迪.直升机旋翼回波特性建模[J]. 上海航天, 2009(5):41-45. ZHU D. Identity of rotor blade echo signal of hovering helicopter[J]. Aerospace Shanghai, 2009(5):41-45(in Chinese).
[20] TOL S, DEGERTEKIN F L, ERTURK A. Phononic crystal Luneburg lens for omnidirectional elastic wave focusing and energy harvesting[J]. Applied Physics Letters, 2017, 111(1):013503.
[21] GISINGER C, WILLBERG M, BALSS U, et al. Differential geodetic stereo SAR with TerraSAR-X by exploiting small multi-directional radar reflectors[J]. Journal of Geodesy, 2017, 91(1):53-67.
[22] ALGAFSH A, INGGS M, MISHRA A K. The effect of perforating the corner reflector on maximum radar cross section[C]//Microwave Symposium. Piscataway, NJ:IEEE Press, 2016:1-4.
[23] 丁鹭飞, 耿富录. 雷达原理[M]. 西安:西安电子科技大学出版社, 2003:147. DING L F, GENG F L. Radar principle[M]. Xi'an:Xidian University Press, 2003:147.
[24] 崔海娟, 杨宏春, 张梅, 等. 时域天线阵列半功率波束宽度计算[J]. 微波学报, 2012, 28(1):19-23. CUI H J, YANG H C, ZHANG M, et al. Calculation on the half power beam width of time domain antenna array[J]. Journal of Microwaves, 2012, 28(1):19-23(in Chinese).
文章导航

/