综述

航空发动机钛材料磨削技术研究现状及展望

  • 丁文锋 ,
  • 奚欣欣 ,
  • 占京华 ,
  • 徐九华 ,
  • 傅玉灿 ,
  • 苏宏华
展开
  • 南京航空航天大学 直升机传动技术重点实验室, 南京 210016

收稿日期: 2018-10-29

  修回日期: 2018-11-28

  网络出版日期: 2019-03-08

基金资助

国家自然科学基金(51775275,51475233);江苏省研究生科研与实践创新计划项目(KYCX18_0256);江苏省"六大人才高峰"资助项目(JXQC-002)

Research status and future development of grinding technology of titanium materials for aero-engines

  • DING Wenfeng ,
  • XI Xinxin ,
  • ZHAN Jinghua ,
  • XU Jiuhua ,
  • FU Yucan ,
  • SU Honghua
Expand
  • National Key Laboratory of Science and Technology on Helicopter Transmission, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2018-10-29

  Revised date: 2018-11-28

  Online published: 2019-03-08

Supported by

National Natural Science Foundation of China (51775275, 51475233);Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX18_0256);Six Talents Summit Project in Jiangsu Province (JXQC-002)

摘要

钛材料主要指钛合金、钛铝金属间化合物和钛基复合材料,具有密度低、强度高、抗氧化与蠕变性能好等优异特性,在航空发动机领域具有广泛应用前景。钛材料属于典型的难加工材料。磨削是高效精密加工钛材料的重要方法,可以获得良好的加工精度和表面质量。首先概述了钛材料在航空发动机中的应用及其磨削工艺技术总体情况。随后,从磨削力与磨削温度、砂轮磨损、材料去除机理、表面完整性等方面阐述了钛材料磨削技术的研究进展,并总结了针对钛材料磨削关键问题提出的新工艺和新方法。最后,对钛材料磨削技术未来的研究方向进行了展望。

本文引用格式

丁文锋 , 奚欣欣 , 占京华 , 徐九华 , 傅玉灿 , 苏宏华 . 航空发动机钛材料磨削技术研究现状及展望[J]. 航空学报, 2019 , 40(6) : 22763 -022763 . DOI: 10.7527/S1000-6893.2019.22763

Abstract

Titanium materials, including titanium alloys, titanium alumina intermetallics, and titanium matrix composites, have broad applications in aero-engine industry for their outstanding properties such as low density, high strength, excellent oxidation, and creep resistance. However, titanium materials are the typical difficult-to-machine materials. Grinding is an important method for high-efficiency and precision machining of titanium materials, which could produce good machining accuracy and surface quality. This paper firstly outlines the application statues of titanium materials in aero-engines and the development of its grinding operation. Then, the research advances on grinding technology of titanium materials are reviewed from the aspects of grinding force and temperature, abrasive tool wear, material removal rates, and surface integrity, followed by a summary of new methods and technologies proposed for solving some critical problems in grinding titanium materials. Finally, the prospect of future research on grinding of these titanium materials is proposed.

参考文献

[1] KLOCKE F,SOO S L,KARPUSCHEWSKI B,et al.Abrasive machining of advanced aerospace alloys and composites[J].CIRP Annals-Manufacturing Technology,2015,64(2):581-604.
[2] ASPINWALL D K,DEWES R C,MANTLE A L.The machining of γ-TiAl intermetallic alloys[J].CIRP Annals-Manufacturing Technology,2005,54(1):99-104.
[3] XI X X,YU T Y,DING W F,et al.Grinding of Ti2AlNb intermetallics using silicon carbide and alumina abrasive wheels:Tool surface topology effect on grinding force and ground surface quality[J].Precision Engineering,2018,53:134-145.
[4] XI X X,DING W F,LI Z,et al.High speed grinding of particulate reinforced titanium matrix composites using a monolayer brazed cubic boron nitride wheel[J].International Journal of Advanced Manufacturing Technology,2017,90(5-8):1529-1538.
[5] ULUTAN D,OZEL T.Machining induced surface integrity in titanium and nickel alloys:A review[J].International Journal of Machine Tools and Manufacture,2011,51(3):250-280.
[6] KARTAVYKH A V,ASNIS E A,PISKUN N V.Complementary thermodynamic and dilatometric assessment of phase transformation pathway in new beta-stabilized TiAl intermetallics[J].Materials Letters,2017,189:217-220.
[7] 杨锐.钛铝金属间化合物的进展与挑战[J].金属学报,2015,51(2):129-147.YANG R.Advances and challenges of TiAl base alloys[J].Acta Metallurgica Sinica,2015,51(2):129-147(in Chinese).
[8] CHENG L,LI J S,XUE X Y.Effect of beta/B2 phase on cavitation behavior during superplastic deformation of TiAl alloys[J].Journal of Alloys and Compounds,2017,693:749-759.
[9] 陈玉勇,苏勇君,孔凡涛.TiAl金属间化合物制备技术的研究进展[J].稀有金属材料与工程,2014,43(3):757-762.CHEN Y Y,SU Y J,KONG F T.Research progress in preparation of TiAl interemetallic based compound[J].Rare Metal Materials and Engineering,2014,43(3):757-762(in Chinese).
[10] HOOD R,COOPER P,ASPINWALL D K,et al.Creep feed grinding of γ-TiAl using single layer electroplated diamond superabrasive wheels[J].CIRP Annals-Manufacturing Technology,2015,11:36-44.
[11] 李世琼,张建伟,程云君,等.Ti3Al和Ti2AlNb基金属间化合物结构材料研发现状[J].稀有金属材料与工程,2005,34(增刊3):104-109.LI S Q,ZHANG J W,CHENG Y J,et al.Current status on development of Ti3Al and Ti2AlNb intermetallic structural materials[J].Rare Metal Materials and Engineering,2005,34(suppl.3):104-109(in Chinese).
[12] 罗国珍.钛基复合材料的研究与发展[J].稀有金属材料与工程,1997(2):1-7.LUO G Z.Recent development of titanium metallic matrix composites[J].Rare Metal Materials and Engineering,1997(2):1-7(in Chinese).
[13] 《中国航空材料手册》编辑委员会.中国航空材料手册第四卷:钛合金、铜合金[M].北京:中国标准出版社,2002:104-187.Editorial Committee of China Aviation Materials Handbook.China aviation materials handbook,Part 4:Titanium alloys and copper alloys[M].Beijing:Standards Press of China,2002:104-187(in Chinese).
[14] BENTLEY S A,ASPINWALL D K.A comparison of the grinding of IMI318 titanium alloy and a gamma titanium aluminide intermetallic[C]//Proceedings of The 32nd International MATADOR Conference,1997:331-336.
[15] GUO G,LIU Z,AN Q,et al.Experimental investigation on conventional grinding of Ti-6Al-4V using SiC abrasive[J].International Journal of Advanced Manufacturing Technology,2011,57(1-4):135-142.
[16] SETTI D,YADAV N K,GHOSH S.Grindability improvement of Ti-6Al-4V using cryogenic cooling[J].Proceedings of the Institution of Mechanical Engineers B:Journal of Engineering Manufacturing,2014,228(9):1131-1137.
[17] TANG J S,PU X F,XU H J,et al.Studies on mechanisms and improvement of workpiece burn during grinding of titanium alloys[J].CIRP Annals-Manufacturing Technology,1990,37(1):353-356.
[18] TURLEY D M.Factors affecting surface finish when grinding titanium and a titanium alloy(Ti-6Al-4V)[J].Wear,1985,104(4):323-335.
[19] XU X,YU Y,HUANG H.Mechanisms of abrasive wear in the grinding of titanium(TC4)and nickel(K417)alloys[J].Wear,2003,255(7):1421-1426.
[20] XU X,YU Y.Adhesion at abrasive-Ti-6Al-4V interface with elevated grinding temperatures[J].Journal of Materials Science Letters,2002,21(16):1293-1295.
[21] LI S,WU Y,YAMAMURA K,et al.Improving the grindability of titanium alloy Ti-6Al-4V with the assistance of ultrasonic vibration and plasma electrolytic oxidation[J].CIRP Annals-Manufacturing Technology,2017,66(1):345-348.
[22] PAUL S,SINGH A K,GHOSH A.Grinding of Ti-6Al-4V under small quantity cooling lubrication environment using alumina and MWCNT nanofluids[J].Advanced Manufacturing Processes,2016,32(6):608-615.
[23] LI X,CHEN Z,CHEN W.Suppression of surface burn in grinding titanium alloy TC4 using a self-inhaling internal cooling wheel[J].Chinese Journal of Aeronautics,2011,24(1):96-101.
[24] SADEGHI M H,HADDAD M J,TAWAKOLI T,et al.Minimum quantity lubrication-MQL in grinding of Ti-6Al-4V titanium alloy[J].International Journal of Advanced Manufacturing Technology,2009,44(5-6):487-500.
[25] TEICHER U,GHOSH A,CHATTOPADHYAY A B,et al.On the grindability of titanium alloy by brazed type monolayered superabrasive grinding wheels[J].International Journal of Machine Tools and Manufacture,2006,46(6):620-622.
[26] TEICHER U,KVNANZ K,GHOSH S,et al.Performance of diamond and CBN single-layered grinding wheels in grinding titanium[J].Materials and Manufacturing Processes,2008,23(3-4):224-227.
[27] VEMULA V V,KHAN T A.Study on grindability of Ti-6Al-4V using solid lubricants[J].International Journal of Emerging Technologies,2012,3(1):109-114.
[28] KUO C,HSU Y,CHUNG C,et al.Multiple criteria optimization in coated abrasive grinding of titanium alloy using minimum quantity lubrication[J].International Journal of Machine Tools and Manufacture,2017,115:47-59.
[29] WANG J,DING W,ZHU Y,et al.Fracture mechanism of polycrystalline cubic boron nitride abrasive grains during single-grain grinding of Ti-6Al-4V titanium alloy[J].International Journal of Advanced Manufacturing Technology,2017,94(1-4):281-291.
[30] GUO G Q,LIU Z Q,ZHENG X H,et al.Investigation on surface grinding of Ti-6Al-4V using minimum quantity lubrication[J].Advanced Materials Research,2012,500(3):308-313.
[31] DING W F,LIU Z W,HE J,et al.Grinding performance of titanium alloy Ti-6Al-4V with monolayer brazed CBN slotted wheels[J].Key Engineering Materials,2012,522:162-166.
[32] GRDULSKA A.Measurement of force components and Ra surface roughness parameter during grinding titanium alloy[J].Advances in Materials Science,2014,14(3):18-23.
[33] MADARKAR R,AGARWAL S,ATTAR P,et al.Application of ultrasonic vibration assisted MQL in grinding of Ti-6Al-4V[J].Materials & Manufacturing Processes,2018,33(13):1445-1452.
[34] MELLO A V D,SILVA R B D,áLISSON R M,et al.Surface grinding of Ti-6Al-4V alloy with SiC abrasive wheel at various cutting conditions[J].Procedia Manufacturing,2017,10:590-600.
[35] SETTI D,SINHA M K,GHOSH S,et al.Performance evaluation of Ti-6Al-4V grinding using chip formation and coefficient of friction under the influence of nanofluids[J].International Journal of Machine Tools & Manufacture,2015,88:237-248.
[36] GUO G G,LIU Z Q,AN Q L,et al.Experimental investigation on conventional grinding of TC4 and TC11 using SiC abrasive[J].Advanced Materials Research,2012,426:52-55.
[37] DING W F,XU J H,CHEN Z Z,et al.Grain wear of brazed polycrystalline CBN abrasive tools during constant-force grinding Ti-6Al-4V alloy[J].International Journal of Advanced Manufacturing Technology,2011,52(9-12):969-976.
[38] ELANCHEZHIAN J,KUMAR M P,MANIMARAN G.Grinding titanium Ti-6Al-4V alloy with electroplated cubic boron nitride wheel under cryogenic cooling[J].Journal of Mechanical Science & Technology,2015,29(11):4885-4890.
[39] TACHIBANA T,KOBAYAHI S,LI S,et al.Ultrasonic assisted electrolytic grinding of titanium alloy Ti-6Al-4V[J].International Journal of Nanomanufacturing,2017,13(2):152-160.
[40] CHEN Y,DING L Y,FU Y C,et al.Dry grinding of titanium alloy using brazed monolayer CBN wheels coated with graphite lubricant[J].Transactions of Nanjing University of Aeronautics and Astronautics,2014,31(1):104-110.
[41] 胥军,卢文壮,王晗,等.TC4-DT钛合金磨削表面特性及其摩擦磨损性能[J].航空学报,2014,35(2):567-573.XU J,LU W Z,WANG H,et al.Characteristics and wear properties of grinding surface of titanium alloy TC4-DT[J].Acta Aeronautica et Astronautica Sinica,2014,35(2):567-573(in Chinese).
[42] 张红霞,陈五一,陈志同.SG砂轮磨削钛合金烧伤机理[J].北京航空航天大学学报,2008,34(1):22-26.ZHANG H X,CHEN W Y,CHEN Z T.Grinding burn mechanism of Titanium alloys with SG wheels[J].Journal of Beijing University of Aeronautics and Astronautics,2008,34(1):22-26(in Chinese).
[43] 任敬心,华定安,黄奇,等.磨削钛合金时砂轮磨损机理的研究[J].航空学报,1991,12(6):266-272.REN J X,HUA D A,HUANG Q,et al.Study on the mechanism of wheel wear during grinding titanium alloy[J].Acta Aeronautica et Astronautica Sinica,1991,12(6):266-272(in Chinese).
[44] 刘森.钛合金磨削中砂轮磨损及工件表面粗糙度研究[D].上海:上海大学,2015:9-15.LIU S.The research on titanium alloy grinding wheel wear and surface roughness of the workpiece[D].Shanghai:Shanghai University,2015:9-15(in Chinese).
[45] 曾治.钛合金磨削工艺试验研究[D].长沙:湖南大学,2014:30-33.ZENG Z.Experiment research on grinding process of titanium alloy[D].Changsha:Hunan University,2014:30-33(in Chinese).
[46] 刘阳.基于加工中心的钛合金磨削加工工艺研究[D].沈阳:东北大学,2012:33-63.LIU Y.Research on processing technology of titanium alloy grinding based on machining center[D].Shenyang:Northeastern University,2012:33-63(in Chinese).
[47] NIK M G,MOVAHHEDY M R,AKBARI J.Ultrasonic-assisted grinding of Ti-6Al-4V alloy[J].Procedia CIRP,2012,1(1):353-358.
[48] 安庆龙,傅玉灿,徐九华,等.低温气动喷雾射流冲击冷却技术在钛合金磨削中的应用[J].中国机械工程,2006,17(11):1117-1120.AN Q L,FU Y C,XU J H,et al.Application of cryogenic pneumatic mist jet impinging in grinding of Ti-6Al-4V[J].China Mechanical Engineering,2006,17(11):1117-1120(in Chinese).
[49] 康仁科,任敬心.改善钛合金磨削残余应力的有效途径[J].航空制造技术,1990(2):7-11.KANG R K,REN J X.Effective approaches to improve residual stress in grinding of titanium alloys[J].Aeronautical Manufacturing Technology,1990(2):7-11(in Chinese).
[50] MAROJU N K,JIN X.Effects of vibration assistance on surface residual stress in grinding of Ti6Al4V Alloy[J].Procedia Manufacturing,2017,10:171-182.
[51] ZHAO T,SHI Y,LAAKSO S,et al.Investigation of the effect of grinding parameters on surface quality in grinding of TC4 titanium alloy[C]//International Conference on Flexible Automation and Intelligent Manufacturing,2017:2131-2138.
[52] HUO W,XU J,FU Y,et al.Dry grinding of Ti6Al4V alloy with flap wheels[J].Transactions of Nanjing University of Aeronautics and Astronautics,2010,27(2):131-137.
[53] TIAN L,FU Y C,DING W F,et al.Removal mechanism of titanium alloy Ti6Al4V based on single-grain high speed grinding test[J].Key Engineering Materials,2011,487:39-43.
[54] LI H Y,TIAN L,FU Y C,et al.Experimental studies on forces and specific energy in high speed grinding of titanium alloy Ti6Al4V[J].Advanced Materials Research,2013,797:112-117.
[55] SHENG X M,TANG K,YU J W,et al.Experimental research of grinding force and specific grinding energy of TC4 titanium alloy in high speed deep grinding[J].Advanced Materials Research,2009,76-78:55-60.
[56] YIN S H,TANG K,SHENG X M,et al.Surface characteristics and roughness prediction of TC4 titanium alloy in high speed grinding[J].Advanced Materials Research,2009,76-78:49-54.
[57] 田霖,傅玉灿,杨路,等.钛合金Ti6Al4V高速磨削试验研究[J].中国机械工程,2014,25(22):3056-3060.TIAN L,FU Y C,YANG L,et al.Experimental studies for high speed grinding of titanium alloy Ti6Al4V[J].China Mechanical Engineering,2014,25(22):3056-3060(in Chinese).
[58] 肖蓝湘.TC4钛合金高速外圆磨削实验研究[D].湘潭:湖南科技大学,2016:45-57.XIAO L X.Experimental study of surface quality in high speed cylindrical grinding of titanium alloy[D].Xiangtan:Hunan University of Science and Technology.2016:45-57(in Chinese).
[59] 黑华征.CBN砂轮高速磨削钛合金试验研究[D].南京:南京航空航天大学,2011:23-46.HEI H Z.Experimental research on high speed grinding titanium alloy with CBN wheels[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2011:23-46(in Chinese).
[60] 俞兴华.陶瓷结合剂CBN砂轮高速磨削钛合金(TC4)的实验研究[D].厦门:华侨大学,2011:43-51.YU X H.Experimental study on high speed grinding of titanium alloy(TC4)with vitrified CBN grinding wheels[D].Xiamen:Huaqiao University,2011:43-51(in Chinese).
[61] FU D K,DING W F,MIAO Q,et al.Simulation research on the grinding forces and stresses distribution in single-grain surface grinding of Ti-6Al-4V alloy when considering the actual cutting-depth variation[J].International Journal of Advanced Manufacturing Technology,2017,91(9-12):3591-3602.
[62] YANG C Y,XU J H,DING W F,et al.Dimension accuracy and surface integrity of creep feed ground titanium alloy with monolayer brazed CBN shaped wheels[J].Chinese Journal of Aeronautics,2010,23(5):585-590.
[63] SHI Z,ATTIA H.High removal rate grinding of titanium alloys with electroplated CBN wheels[J].International Journal of Abrasive Technology,2014,6(3):243-255.
[64] SUN F H,XU H J.A new technology on enhancing heat transfer at grinding zone through jet impingement during creep feed grinding[J].Machining Science & Technology,2002,6(1):43-52.
[65] JIANG B,FU Y C,ZHAO Z C,et al.Experimental study on profile machining of titanium alloys with superabrasive tools[J].Advanced Materials Research,2016,1136:60-65.
[66] FU Y C,XU H J,SUN F H.Experimental study on creep feed deep grinding titanium alloy with slotted CBN grinding wheel[J].Key Engineering Materials,2006,304-305:166-170.
[67] 赫青山,傅玉灿,徐鸿钧,等.TC4钛合金高效磨削加工用环形热管砂轮的研制[J].航空学报,2013,34(7):1740-1747.HE Q S,FU Y C,XU H J,et al.Development of annular heat pipe grinding wheel for high efficiency machining of TC4 titanium alloy[J].Acta Aeronautica et Astronautica Sinica,2013,34(7):1740-1747(in Chinese).
[68] 童圣亭.单层钎焊CBN砂轮成型磨削钛合金的研究[D].南京:南京航空航天大学,2007:1-7.TONG S T.Profile grinding of titanium alloy with monolayer brazed CBN wheels[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2007:1-7(in Chinese).
[69] 杨长勇.单层钎焊立方氮化硼砂轮缓进深切磨削钛合金的基础研究[D].南京:南京航空航天大学,2010:71-76.YANG C Y.Basic research on creep feed grinding of titanium alloy with monolayer brazed CBN wheels[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2010:71-76(in Chinese).
[70] 盛晓敏,唐昆,宓海青,等.TC4钛合金高效深磨磨削力及比磨削能特征研究[J].中国机械工程,2009,20(1):24-28.SHENG X M,TANG K,MI H Q,et al.Characteristic investigations on grinding force and specific grinding energy of high efficiency deep grinding for TC4 titanium alloy[J].China Mechanical Engineering,2009,20(1):24-28(in Chinese).
[71] 唐昆.TC4钛合金高效深磨工艺试验研究及其磨削质量预测[D].长沙:湖南大学,2007:32-36.TANG K.The process experimental study on high efficiency deep grinding for TC4 titanium alloy and prediction of grinding quality[D].Changsha:Hunan University,2007:32-36(in Chinese).
[72] 肖鹏.钛合金TC4超高速磨削表面完整性的研究[D].长沙:湖南大学,2009:30-39.XIAO P.Study on the surface integrity of TC4 titanium alloy in ultra high speed grinding process[D].Changsha:Hunan University,2009:30-39(in Chinese).
[73] ZHANG H X,CHEN W Y,CHEN Z T.Experimental studies on grinding of titanium alloy with SG wheels[J].Key Engineering Materials,2007,329:75-80.
[74] 李亮亮.小磨头磨削钛合金TC11的表面完整性研究[D].大连:大连理工大学,2012:3-9.LI L L.The investigation on surface integrity in grinding titanium alloy TC11 with small grinding wheel[D].Dalian:Dalian University of Technology,2012:3-9(in Chinese).
[75] 董志刚,曹克,康仁科,等.微晶刚玉砂轮磨削钛合金TC17试验研究[J].金刚石与磨料磨具工程,2015(2):14-20.DONG Z G,CAO K,KANG R K,et al.Experimental research on grinding performance of TC17 alloy with microcrystalline alumina grinding wheels[J].Diamond & Abrasives Engineering,2015,35(2):14-20(in Chinese).
[76] 郝丙君.微晶刚玉砂轮磨削TC17钛合金试验研究[D].大连:大连理工大学,2015:24-49.HAO B J.Experimental research on grinding performance of TC17 alloy with microciystalline alumina grinding wheels[D].Dalian:Dalian University of Technology,2015:24-49(in Chinese).
[77] 曹克.微晶刚玉砂轮的钛合金磨削性能试验研究[D].大连:大连理工大学,2016:22-50.CAO K.Experimental research on the grinding performance of microciystalline alumina grinding wheels on titanium alloy[D].Dalian:Dalian University of Technology,2016:22-50(in Chinese).
[78] NELSON L,XU H H K,DANYLUK S,et al.Subsurface damage in grinding titanium aluminide[J].Machining Science and Technology,1997,1(2):289-297.
[79] RAZAVI H A,KURFESS T R,DANYLUK S.Force control grinding of gamma titanium aluminide[J].International Journal of Machine Tools and Manufacture,2003,44(2):50-56.
[80] NELSON L,KURFESS T,RAZAVI H A,et al.Generating and modelling subsurface damage in grinding gamma Ti-48Al[J].Machining Science and Engineering,1999,10:467-472.
[81] BENTLEY S A,MANTLE A L,ASPINWALL D K.The effect of machining on the fatigue strength of a gamma titanium aluminide intermetallic alloy[J].Intermetallics,1999,7(8):967-969.
[82] BENTLEY S A,GOH N P,ASPINWALL D K.Reciprocating surface grinding of a gamma titanium aluminide intermetallic alloy[J].Journal of Materials Processing Technology,2001,118(1-3):22-28.
[83] BHADURI D,SOO S L,ASPINWALL D K,et al.Ultrasonic assisted creep feed grinding of gamma titanium aluminide using conventional and superabrasive wheels[J].CIRP Annals - Manufacturing Technology,2017,66(1):341-344.
[84] HOOD R,ASPINWALL D K,VOICE W.Creep feed grinding of gamma titanium aluminide and burn resistant titanium alloys using SiC abrasive[J].International Journal of Machine Tools and Manufacture,2007,47(9):1486-1492.
[85] HOOD R.The machinability of a gamma titanium aluminide intermetallic[D].Birmingham:University of Birmingham,2010:5.29-5.47.
[86] HOOD R,ASPINWALL D K,VOICE W.Creep feed grinding of a gamma titanium aluminide intermetallic alloy using SiC abrasives[J].Journal of Materials Processing Technology,2007,191(1):210-214.
[87] XI X X,DING W F,FU Y C,et al.Grindability evaluation and tool wear during grinding of Ti2AlNb intermetallics[J].International Journal of Advanced Manufacturing Technology,2017,94(1-4):1441-1450.
[88] SIM K H,ZHANG F,WANG G,et al.Experimental comparison of ground surface characteristics for P/M Ti2AlNb-based alloy using CBN and diamond grinding wheels[J].International Journal of Advanced Manufacturing Technology,2017,94(6):1885-1894.
[89] ZHAO B,DING W F,DAI J B,et al.A comparison between conventional speed grinding and super-high speed grinding of(TiCp+TiBw)/Ti-6Al-4V composites using vitrified CBN wheel[J].International Journal of Advanced Manufacturing Technology,2014,72(1-4):69-74.
[90] DING W,ZHAO B,XU J,et al.Grinding behavior and surface appearance of(TiCp+TiBw)/Ti-6Al-4V titanium matrix composites[J].Chinese Journal of Aeronautics,2014,27(5):1334-1342.
[91] LI Z,DING W,LIU C,et al.Prediction of grinding temperature of PTMCs based on the varied coefficients of friction in conventional-speed and high-speed surface grinding[J].International Journal of Advanced Manufacturing Technology,2016,90(5-8):2335-2344.
[92] LIU C J,DING W F,YU T Y,et al.Materials removal mechanism in high-speed grinding of particulate reinforced titanium matrix composites[J].Precision Engineering,2018,51:68-77.
[93] HE J,DING W F,MIAO Q,et al.Experimental investigation on surface topography for PTMCs during high speed grinding[J].Applied Mechanics and Materials,2013,423-426:699-703.
[94] LIU C,DING W,LI Z,et al.Prediction of high-speed grinding temperature of titanium matrix composites using BP neural network based on PSO algorithm[J].International Journal of Advanced Manufacturing Technology,2016,89(5-8):1-9.
[95] LI Z,DING W F,SHEN L,et al.Comparative investigation on high-speed grinding of TiCp/Ti-6Al-4V particulate reinforced titanium matrix composites with single-layer electroplated and brazed CBN wheels[J].Chinese Journal of Aeronautics,2016,29(5):1414-1424.
[96] ZHAO B,DING W F,XU J H,et al.Comparative study on cutting behavior of vitrified cubic boron nitride wheel and electroplated cubic boron nitride wheel in high-speed grinding of(TiCp+TiBw)/Ti-6Al-4V composites[J].Proceedings of the Institution of Mechanical Engineers Part B:Journal of Engineering Manufacture,2014,230(3):428-438.
[97] DING W F,XI X X.An investigation on wear of monolayer brazed CBN wheels in high speed grinding of particulate reinforced titanium matrix composites[C]//The 21st International Symposium on Advances in Abrasive Technology,2018.
[98] LI Z,DING W,LIU C,et al.Grinding performance and surface integrity of particulate-reinforced titanium matrix composites in creep-feed grinding[J].International Journal of Advanced Manufacturing Technology,2017,94(2):1-12.
[99] MALKIN S.Grinding technology:theory and application of machining with abrasives[M].New York:Wiley,1989.
[100] YAO C,WANG T,XIAO W,et al.Experimental study on grinding force and grinding temperature of Aermet 100 steel in surface grinding[J].Journal of Materials Processing Technology,2014,214(11):2191-2199.
[101] 任敬心,华定安.磨削原理[M].北京:电子工业出版社,2011:105-338.REN J X,HUA D A.Principle of grinding[M].Beijing:Electronic Industry Press,2011:105-338(in Chinese).
[102] 张晓玲.钛合金专用树脂CBN磨具的制备与磨削性能的研究[D].郑州:河南工业大学,2017:59-67.ZHANG X L.Study on the preparation and grinding property of resin CBN abrasive for titanium alloy[D].Zhengzhou:Henan University of Technology,2017:59-67(in Chinese).
[103] PAUL S,CHATTOPADHYAY A B.The effect of cryogenic cooling on grinding forces[J].International Journal of Machine Tools and Manufacture,1996,36(1):63-72.
[104] LI L,FU J,PEKLENIK J.A study of grinding force mathematical model[J].CIRP Annals-Manufacturing Technology,1980,29(1):245-249.
[105] RASIM M,MATTFELD P,KLOCKE F.Analysis of the grain shape influence on the chip formation in grinding[J].Journal of Materials Processing Technology,2015,226(9):60-68.
[106] ADIBI H,REZAEI S M,SARHAN A A D.Analytical modeling of grinding wheel loading phenomena[J].International Journal of Advanced Manufacturing Technology,2013,68(1-4):473-485.
[107] DYAKONOV A A,ARDASHEV D V.Prediction of blunting area of abrasive grains on a grinding wheel[J].Journal of Manufacturing Science & Engineering,2017,139(12):121004-1-121004-5.
[108] SHARMAN A R C,ASPINWALL D K,DEWES R C,et al.The effects of machined workpiece surface integrity on the fatigue life of g-TiAl[J].International Journal of Machine Tools and Manufacture,2001,41(11):1681-1685.
[109] JAWAHIR I S,BRINKSMEIER E,M'SAOUBI R,et al.Surface integrity in material removal processes:Recent advances[J].CIRP Annals-Manufacturing Technology,2011,60(2):603-626.
[110] FIELD M,KAHLES J F.The surface integrity of machined and ground high strength steels[C]//DMIC Report,1964,210:54-77.
[111] 岳玮.精密切削加工表面完整性及评价方法研究[D].镇江:江苏大学,2016:1-11.YUE W.Study on Surface integrity and evaluation in precision machining[D].Zhenjiang:Jiangsu University,2016:1-11(in Chinese).
[112] 何永熹.机械精度设计与检测[M].北京:国防工业出版社,2006:10-25.HE Y X.Design and detection of mechanical accuracy[M].Beijing:National Defense Industry Press,2006:10-25(in Chinese).
[113] THAKUR A,GANGOPADHYAY S.State-of-the-art in surface integrity in machining of nickel-based super alloys[J].International Journal of Machine Tools & Manufacture,2016,100:25-54.
[114] GINTING A,NOUARI M.Surface integrity of dry machined titanium alloys[J].International Journal of Machine Tools and Manufacture,2009,49(3):325-332.
[115] DING W,ZHANG L,LI Z,et al.Review on grinding-induced residual stresses in metallic materials[J].International Journal of Advanced Manufacturing Technology,2017,88(9-12):2939-2968.
[116] MOULIK P N,YANG H T Y,CHANDRASEKAR S.Simulation of thermal stresses due to grinding[J].International Journal of Mechanical Sciences,2001,43(3):831-851.
[117] MAHDI M,ZHANG L.Applied mechanics in grinding,Part 7:Residual stresses induced by the full coupling of mechanical deformation,thermal deformation and phase transformation[J].International Journal of Machine Tools & Manufacture,1999,39(8):1285-1298.
[118] 徐九华,张志伟,傅玉灿.镍基高温合金高效成型磨削的研究进展与展望[J].航空学报,2014,35(2):351-360.XU J H,ZHANG Z W,FU Y C.Review and prospect on high efficiency profile grinding of nickel-based superalloys[J].Acta Aeronautica et Astronautica Sinica,2014,35(2):351-360(in Chinese).
[119] 李奇林.超高频连续感应钎焊高速砂轮[D].南京:南京航空航天大学,2013:12-95.LI Q L.High-speed grinding wheel brazed continuously by ultra-high frequency induction[D] Nanjing:Nanjing University of Aeronautics and Astronautics,2013:12-95(in Chinese).
[120] 童欣.超高频感应钎焊单层超硬磨料成形砂轮研制[D].南京:南京航空航天大学,2015:8-56.TONG X.Development of single-layer brazed super-hard abrasive forming wheel manufactured with ultra-high frequency induction brazing[D] Nanjing:Nanjing University of Aeronautics and Astronautics,2015:8-56(in Chinese).
[121] 丁文锋.镍基高温合金高效磨削用单层钎焊立方氮化硼砂轮的研制[D].南京:南京航空航天大学,2006:12-108.DING W F.Research and development of monolayer brazed CBN wheels for high efficiency grinding nickel-based superalloy[D] Nanjing:Nanjing University of Aeronautics and Astronautics,2006:12-108(in Chinese).
[122] 赵泽宇.单层PCBN砂轮感应钎焊制备技术与磨损特性研究[D].南京:南京航空航天大学,2017:8-42.ZHAO Z Y.Fabrication and wear of monolayer polycrystalline CBN grinding wheels based on induction brazing technology[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2017:8-42(in Chinese).
[123] 许玮.高频感应钎焊多晶CBN超硬磨粒自锐性能研究[D].南京:南京航空航天大学,2017:9-53.XU W.Self-sharpening of polycrystalline CBN grains brazed using high-frequency induction heating[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2017:9-53(in Chinese).
[124] CHEN J J,FU Y C,GU Z B,et al.Study on heat transfer of a rotating heat pipe cooling system in dry abrasive-milling[J].Applied Thermal Engineering,2017,115:736-743.
[125] CHEN J J,FU Y C,LI Q L,et al.Investigation on induction brazing of revolving heat pipe grinding wheel[J].Materials & Design,2017,116:21-30.
[126] 刘国涛.低温气体雾化纳米流体微量润滑磨削钛合金强化换热机理与实验研究[D].青岛:青岛理工大学,2017:75-85.LIU G T.The heat transfer enhancement mechanism and experimental research of cryogenic air atomizing nanofluids for minimal quantity lubrication titanium alloy[D].Qingdao:Qingdao University of Technology,2017:75-85(in Chinese).
[127] 徐鸿钧,傅玉灿,孙方宏,等.高效磨削时弧区热作用机理与强化弧区换热的基础研究[J].中国科学E辑,2002,32(3):296-307.XU H J,FU Y C,SUN F H,et al.Fundamental research on functional mechanisms and heat transfer in grinding zone during high efficiency grinding[J].Science in China(Series E),2002,32(3):296-307(in Chinese).
[128] NGUYEN T,ZHANG L C.Performance of a new segmented grinding wheel system[J].International Journal of Machine Tools and Manufacture,2009,49(3):291-296.
[129] 陈晓梅,张德明,靖崇龙,等.微孔砂轮射流冲击内外冷却技术在钛合金磨削中的应用研究[J].机械设计与制造,2010(8):113-116.CHEN X M,ZHANG D M,JING C L,et al.Application study on the grinding Ti-6Al-4V of jet impinging cooling both in & out to pore grinding wheel[J].Machinery Design & Manufacture,2010(8):113-116(in Chinese).
[130] 刘凡.旋转超声磨削钛合金的磨削力与工具磨损研究[D].成都:西南交通大学,2017:21-42.LIU F.Tool wear and grinding force in rotary ultrasonic machining of titanium alloy[D].Chengdu:Southwest Jiaotong University,2017:21-42(in Chinese).
[131] 王瑞源.超声振动辅助端面磨削TC4数值模拟及实验研究[D].南昌:南昌航空大学,2018:51-64.WANG R Y.Numerical simulation and experimental research on ultrasonic vibration aided end surface grinding TC4[D].Nanchang:Nanchang Hangkong University,2018:51-64(in Chinese).
[132] LAUWERS B,KLOCKE F,KLINK A,et al.Hybrid processes in manufacturing[J].CIRP Annals-Manufacturing Technology,2014,63(2):561-583.
[133] QIN N,PEI Z J,TREADWELL C,et al.Physics-based predictive cutting force model in ultrasonic-vibration-assisted grinding for titanium drilling[J].Journal of Manufacturing Science and Engineering,2009,131(4):1-9.
[134] 张庆良,汪浩,曲宁松,等.GH4169电解磨削加工试验研究[J].电加工与模具,2016(4):21-25.ZHANG Q L,WANG H,QU N S,et al.Experimental investigation on GH4169 by electrochemical grinding[J].Electromachining & Mould,2016(4):21-25(in Chinese).
[135] 单晓慧.钛合金电解磨削加工工艺研究[D].大连:大连理工大学,2015:51-60.SHAN X H.The research on electrochemical grinding process for titanium alloys[D].Dalian:Dalian University of Technology,2015:51-60(in Chinese).
[136] 孙元普.电解磨削加工钛合金基础试验研究[D].大连:大连理工大学,2014:45-57.SUN Y P.Fundamental experimental research on electrochemical grinding for titanium alloys[D].Dalian:Dalian University of Technology,2014:45-57(in Chinese).
[137] ZABORSKI S,ŁUPAK M,POROS' D.Wear of cathode in abrasive electrochemical grinding of hardly machined materials[J].Journal of Materials Processing Technology,2004149(1):414-418.
[138] GUO B,ZHAO Q L.Ultrasonic vibration assisted grinding of hard and brittle linear micro-structured surfaces[J].Precision Engineering,2017,48:98-106.
[139] XIAO X Z,ZHENG K,LIAO W H,et al.Study on cutting force model in ultrasonic vibration assisted side grinding of zirconia ceramics[J].International Journal of Machine Tools and Manufacture,2016,104:58-67.
[140] WDOWIK R,PORZYCKI J,MAGDZIAK M.Measurements of surface texture parameters after ultrasonic assisted and conventional grinding of ZrO2 based ceramic material characterized by different states of sintering[J].Procedia CIRP,2017,62:293-298.
[141] CHEN J B,FANG Q H,WANG C C,et al.Theoretical study on brittle-ductile transition behavior in elliptical ultrasonic assisted grinding of hard brittle materials[J].Precision Engineering,2016,46:104-117.
[142] LI C,ZHANG F H,MENG B B.Material removal mechanism and grinding force modelling of ultrasonic vibration assisted grinding for SiC ceramics[J].Ceramics International,2017,43(3):2981-2993.
[143] GUERRINI G,LANDI E,PEIFFER K,et al.Dry grinding of gears for sustainable automotive transmission production[J].Journal of Cleaner Production,2018,176:76-88.
[144] 唐进元,郑金超,廖东日,等.12CrNi4A材料轴向超声干磨削残余应力计算及试验研究[J].机械工程学报,2018,54(17):246-254.TANG J Y,ZHENG J C,LIAO D R,et al.Calculation and experimental study on residual stress in axial ultrasonic dry grinding of 12CrNi4A material[J].Journal of Mechanical Engineering,2018,54(17):246-254(in Chinese).
[145] WANG Y,DENG Y,XIU S.Study on the dynamic recrystallization mechanism during pre-stress dry grinding[J].Journal of Manufacturing Processes,2018,32:100-109.
[146] HO C M B,DING H,CHEN X,et al.The effects of dry and wet grinding on the strength of dental zirconia[J].Ceramics International,2018,44(9):10451-10462.
[147] AZARHOUSHANG B,DANESHI A,LEE D H.Evaluation of thermal damages and residual stresses in dry grinding by structured wheels[J].Journal of Cleaner Production,2017,142:1922-1930.
[148] WANG Y,LI C,ZHANG Y,et al.Experimental evaluation of the lubrication properties of the wheel/workpiece interface in MQL grinding with different nanofluids[J].Tribology International,2016,127:487-499.
[149] YANG M,LI C H,ZHANG Y B,et al.Research on microscale skull grinding temperature field under different cooling conditions[J].Applied Thermal Engineering,2017,126:525-537.
[150] 张彦彬,李长河,贾东洲,等.MoS2/CNTs混合纳米流体微量润滑磨削加工表面质量试验评价[J].机械工程学报,2018,54(1):161-170.
ZHANG Y B,LI C H,JIA D Z,et al.Experimental evaluation of the workpiece surface quality of MoS2/CNT nanofluid for minimal quantity lubrication in grinding[J].Journal of Mechanical Engineering,2018,54(1):161-170(in Chinese).
[151] ZHANG D K,LI C H,JIA D Z,et al.Specific grinding energy and surface roughness of nanoparticle jet minimum quantity lubrication in grinding[J].Chinese Journal of Aeronautics,2015,28(2):570-581.
[152] ZHANG D K,LI C H,ZHANG Y B,et al.Experimental research on the energy ratio coefficient and specific grinding energy in nanoparticle jet MQL grinding[J].International Journal of Advanced Manufacturing Technology,2015,78(5-8):1275-1288.
[153] ZHANG Y B,LI C H,JIA D Z,et al.Experimental evaluation of MoS2 nanoparticles in jet MQL grinding with different types of vegetable oil as base oil[J].Journal of Cleaner Production,2015,87(1):930-940.
[154] 马可.基于热管技术的磨削弧区强化换热基础研究[D].南京:南京航空航天大学,2011:75-90.
MA K.Fundamental study on utilization of heat pipe technology to enhance heat transfer in the grinding contact zone[D].Nanjing:Nanjing University of Aeronautics and Astronautics,2011:75-90(in Chinese).
[155] LIU G T,LI C H,ZHANG Y B,et al.Process parameters optimization and experimental evaluation for nanofluid MQL in grinding Ti-6Al-4V based on grey relational analysis[J].Materials & Manufacturing Processes,2017,33(9):950-963.
[156] ZHANG Y B,LI C H,YANG M,et al.Experimental evaluation of cooling performance by friction coefficient and specific friction energy in nanofluid minimum quantity lubrication grinding with different types of vegetable oil[J].Journal of Cleaner Production,2016,139:685-705.
[157] ZHANG Y B,LI C H,JI H J,et al.Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms[J].International Journal of Machine Tools and Manufacture,2017,122:81-97.
[158] GUO S M, LI C H, ZHANG Y B, et al. Experimental evaluation of the lubrication performance of mixtures of castor oil with other vegetable oils in MQL grinding of nickel-based alloy[J]. Journal of Cleaner Production, 2017, 140(3):1060-1076.
[159] ZHANG J C, LI C H, ZHANG Y B, et al. Temperature field model and experimental verification on cryogenic air nanofluid minimum quantity lubrication grinding[J]. International Journal of Advanced Manufacturing Techno-logy, 2018, 97(1-4):209-228.
[160] ZHANG J C, LI C H, ZHANG Y B, et al. Experimental assessment of an environmentally friendly grinding process using nanofluid minimum quantity lubrication with cryogenic air[J]. Journal of Cleaner Production, 2018, 193:236-248.
文章导航

/