材料工程与机械制造

基于碳纳米管薄膜的复合材料层间增韧

  • 于妍妍 ,
  • 张远 ,
  • 高丽敏 ,
  • 曲抒旋 ,
  • 吕卫帮
展开
  • 1. 中国科学技术大学 纳米技术与纳米仿生学院, 合肥 230026;
    2. 中国科学院 苏州纳米技术与纳米仿生研究所 先进纳米复合材料创新中心, 苏州 215123;
    3. 上海复合材料科技有限公司 制造二部, 上海 201112;
    4. 中国商飞北京民用飞机技术研究中心 结构完整性部, 北京 102211

收稿日期: 2019-01-09

  修回日期: 2019-01-23

  网络出版日期: 2019-03-01

基金资助

国家自然科学基金青年科学基金(51503225);江苏省自然科学基金(BK20181196)

Toughness enhancement for interlaminar fracture composite based on carbon nanotube films

  • YU Yanyan ,
  • ZHANG Yuan ,
  • GAO Limin ,
  • QU Shuxuan ,
  • LYU Weibang
Expand
  • 1. School of Nano Technology and Nano Bionics, University of Science and Technology of China, Hefei 230026, China;
    2. Innovation Center for Advanced Nanocomposites, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China;
    3. Second Manufacturing Department, Shanghai Composites Science and Technology Limited Company, Shanghai 201112, China;
    4. Department of Structural Integrity, COMAC Beijing Aeronautical Science & Technology, Beijing 102211, China

Received date: 2019-01-09

  Revised date: 2019-01-23

  Online published: 2019-03-01

Supported by

National Natural Science Foundation of China Young Scientists Fund(51503225); Jiangsu Natural Science Foundation (BK20181196)

摘要

通过浮动催化化学气相沉积法制备连续碳纳米管薄膜,并将其原位沉积到单向碳纤维织物表面,手工铺层后借助真空辅助树脂传递模塑成型(VARTM)工艺制备碳纳米管-碳纤维/环氧树脂复合材料层压板,研究不同面密度的碳纳米管薄膜对层压板Ⅱ型层间断裂韧性的影响。结果表明,随着碳纳米管薄膜面密度的增加,层压板Ⅱ型层间断裂韧性先逐渐提高,当碳纳米管薄膜面密度为9.64 g/m2时,层压板Ⅱ型层间断裂韧性最佳,与原始层压板相比提高了94%。碳纳米管通过桥接树脂裂纹、从树脂中拔出等方式提高层间断裂韧性。当碳纳米管面密度超过临界值时,会引起树脂浸润困难,导致增韧效果降低。

本文引用格式

于妍妍 , 张远 , 高丽敏 , 曲抒旋 , 吕卫帮 . 基于碳纳米管薄膜的复合材料层间增韧[J]. 航空学报, 2019 , 40(10) : 422900 -422900 . DOI: 10.7527/S1000-6893.2019.22900

Abstract

To enhance the interlaminar toughness of laminated composites, the continuous Carbon NanoTube (CNT) film made by the floating catalyst chemical vapor deposition method is in-situ deposited on the surface of unidirectional carbon fiber fabrics. The CNT film interleaved carbon fiber/epoxy laminated composites are then fabricated by using the Vacuum Assisted Resin Transfer Molding (VARTM) processing. The effect of the areal density of the CNT film on the mode II fracture toughness of these hybrid composites is analyzed. The testing results indicated that mode Ⅱ fracture toughness initially increased gradually with the increase of the areal density of the CNT film. When the areal density of the CNT film is about 9.64 g/m2, mode Ⅱ fracture toughness of the laminate increased by 94% compared with that without the CNT film interleaving. Microcrack bridging by CNTs and CNT pulling-out from the resin are found to be the main mechanisms of toughening. Upon further increasing the areal density of CNT films, mode Ⅱ fracture toughness deceased, which is mainly due to fact that CNT films might not be fully wetted by the resin as they are getting thicker.

参考文献

[1] FAN Z, SANTARE M H, ADVANI S G. Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes[J]. Composites Part A:Applied Science and Manufacturing, 2008, 39(3):540-554.
[2] 赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展[J]. 航空学报, 2018, 39(1):171-199. ZHAO L B, GONG Y, ZHANG J Y. A survey on delamination growth behavior in fiber reinforced composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):171-199(in Chinese).
[3] 张龙, 王波, 矫桂琼, 等. 纤维桥连对复合材料Ⅰ型层间断裂韧性的影响[J]. 航空学报, 2013, 34(4):817-825. ZHANG L, WANG B, JIAO G Q, et al. Influence of fiber bridging on mode Ⅰ interlaminar fracture toughness of composites[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):817-825(in Chinese).
[4] JOSHI S C, DIKSHIT V. Enhancing interlaminar fracture characteristics of woven CFRP prepreg composites through CNT dispersion[J]. Journal of Composite Materials, 2011, 46(6):665-675.
[5] SHAN F L, GU Y Z, LI M, et al. Effect of deposited carbon nanotubes on interlaminar properties of carbon fiber-reinforced epoxy composites using a developed spraying processing[J]. Polymer Composites, 2013, 34(1):41-50.
[6] VAN DER HEIJDEN S, DAELEMANS L, DE SCHOENMAKER B, et al. Interlaminar toughening of resin transfer moulded glass fibre epoxy laminates by polycaprolactone electrospun nanofibres[J]. Composites Science and Technology, 2014, 104:66-73.
[7] STAHL J J, BOGDANOVICH A E, BRADFORD P D. Carbon nanotube shear-pressed sheet interleaves for Mode I interlaminar fracture toughness enhancement[J]. Composites Part A:Applied Science and Manufacturing, 2016, 80:127-137.
[8] DRANSFIELD K, BAILLIE C, MAI Y W. Improving the delamination resistance of CFRP by stitching-a review[J]. Composites Science and Technology, 1994, 50(3):305-317.
[9] CHEN L, IFJU P G, SANKAR B V. A novel double cantilever beam test for stitched composite laminates[J]. Journal of Composite Materials, 2001, 35(13):1137-1149.
[10] HOJO M, MATSUDA S, TANAKA M, et al. Mode I delamination fatigue properties of interlayer-toughened CF/epoxy laminates[J]. Composites Science and Technology, 2006, 66(5):665-675.
[11] 矫桂琼, 宁荣昌, 卢智先, 等. 层间增韧复合材料研究[J]. 宇航材料工艺, 2001, 31(4):36-39. JIAO G Q, NING R C, LU Z X, et al. A study on interleaved composites[J]. Aerospace Materials & Technology, 2001, 31(4):36-39(in Chinese).
[12] 陈利. 三维纺织技术在航空航天领域的应用[J]. 航空制造技术, 2008, 4:45-47. CHEN L. Development and application of 3D textile reinforcements in the aerospace field[J]. China Textile Leader, 2008, 4:45-47(in Chinese).
[13] MOURITZ A P, KOH T M. Re-evaluation of mode I bridging traction modelling for z-pinned laminates based on experimental analysis[J]. Composites Part B:Engineering, 2014, 56:797-807.
[14] ZHENG Y, CHENG X, YASIR B. Effect of stitching on plain and open-hole strength of CFRP laminates[J]. Chinese Journal of Aeronautics, 2012, 25(3):473-484.
[15] 高峰, 姚穆. 织物结构对增强复合材料层间断裂韧性的影响[J]. 西北纺织工学院学报, 2001, 15(2):257-259. GAO F, YAO M. Effect of plain fabric structure on delamination fracture toughness of woven-reinforced composite materials[J]. Journal of Northwest Textile Engineering College, 2001, 15(2):257-259(in Chinese).
[16] JAIN L K, MAI Y W. Analysis of stitched laminated ENF specimens for interlaminar mode II fracture toughness[J]. International Journal of Fracture, 1994, 68(3):219-244.
[17] BECKERMANN G W, PICKERING K L. Mode I and Mode II interlaminar fracture toughness of composite laminates interleaved with electrospun nanofibre veils[J]. Composites Part A:Applied Science and Manufacturing, 2015, 72:11-21.
[18] XU H, TONG X, ZHANG Y, et al. Mechanical and electrical properties of laminated composites containing continuous carbon nanotube film interleaves[J]. Composites Science and Technology, 2016, 127:113-118.
[19] XU X K, ZHANG Y, JIANG J, et al. In-situ curing of glass fiber reinforced polymer composites via resistive heating of carbon nanotube films[J]. Composites Science and Technology, 2017, 149:20-27.
[20] 李敏, 王绍凯, 顾轶卓, 等. 碳纳米管有序增强体及其复合材料研究进展[J]. 航空学报, 2014, 35(10):2699-2721. LI M, WANG S K, GU Y Z, et al. Research progress on macroscopic carbon nanotube assemblies and their composite[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2699-2721(in Chinese).
[21] SALVETAT J P, BRIGGS G A D, BONRAD J M, et al. Elastic and shear moduli of single-walled carbon nanotube ropes[J]. Physical Review Letters, 1999, 82(5):944.
[22] THOSTENSON E T, REN Z, CHOU T W. Advances in the science and technology of carbon nanotubes and their composites:A review[J]. Composites Science and Technology, 2001, 61(13):1899-1912.
[23] SIEGFRIED M, TOLA C, CLAES M, et al. Impact and residual after impact properties of carbon fiber/epoxy composites modified with carbon nanotubes[J]. Composite Structures, 2014, 111:488-496.
[24] BEKYAROVA E, THOSTENSON E T, YU A, et al. Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites[J]. Langmuir, 2007, 23(7):3970-3974.
[25] ASHRAFI B, GUAN J, MIRJALILI V, et al. Enhancement of mechanical performance of epoxy/carbon fiber laminate composites using single-walled carbon nanotubes[J]. Composites Science and Technology, 2011, 71(13):1569-1578.
[26] LI N, WANG G D, MELLY S K, et al. Interlaminar properties of GFRP laminates toughened by CNTs buckypaper interlayer[J]. Composite Structures, 2019, 208:13-22.
[27] MATHUR R B, CHATTERJEE S, SINGH B P. Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties[J]. Composites Science and Technology, 2008, 68(7-8):1608-1615.
[28] VEEDU V P, CAO A, LI X, et al. Multifunctional composites using reinforced laminae with carbon-nanotube forests[J]. Nature Materials, 2006, 5(6):457.
[29] GODARA A, MEZZO L, LUIZI F, et al. Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites[J]. Carbon, 2009, 47(12):2914-2923.
[30] 范雨娇, 顾轶卓, 邓火英, 等. 碳纳米管加入方式对碳纤维/环氧树脂复合材料层间性能的影响[J]. 复合材料学报, 2015(2):332-340. FAN Y J, GU Y Z, DENG H Y, et al. Effect of adding method of carbon nanotube on interlaminar property of carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2015(2):332-340(in Chinese).
[31] 张远,于妍妍,何静宇,等. 碳纳米管薄膜增强复合材料I型断裂韧性研究[J]. 炭素技术,2018, 37(4):15-20. ZHANG Y, YU Y Y, HE J Y, et al. The model I fracture toughness of composites enhanced by using carbon nanotube film[J]. Carbon Techniques, 2018, 37(4):15-20(in Chinese).
[32] WANG S, HALDANE D, LIANG R, et al. Nanoscale infiltration behaviour and through-thickness permeability of carbon nanotube buckypapers[J]. Nanotechnology, 2013, 24(1):015704.
[33] DAELEMANS L, VAN DER HEIJDEN S, DE BAERE I, et al. Using aligned nanofibres for identifying the toughening micromechanisms in nanofibre interleaved laminates[J]. Composites Science and Technology, 2016, 124:17-26.
文章导航

/