[1] FAN Z, SANTARE M H, ADVANI S G. Interlaminar shear strength of glass fiber reinforced epoxy composites enhanced with multi-walled carbon nanotubes[J]. Composites Part A:Applied Science and Manufacturing, 2008, 39(3):540-554.
[2] 赵丽滨, 龚愉, 张建宇. 纤维增强复合材料层合板分层扩展行为研究进展[J]. 航空学报, 2018, 39(1):171-199. ZHAO L B, GONG Y, ZHANG J Y. A survey on delamination growth behavior in fiber reinforced composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1):171-199(in Chinese).
[3] 张龙, 王波, 矫桂琼, 等. 纤维桥连对复合材料Ⅰ型层间断裂韧性的影响[J]. 航空学报, 2013, 34(4):817-825. ZHANG L, WANG B, JIAO G Q, et al. Influence of fiber bridging on mode Ⅰ interlaminar fracture toughness of composites[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):817-825(in Chinese).
[4] JOSHI S C, DIKSHIT V. Enhancing interlaminar fracture characteristics of woven CFRP prepreg composites through CNT dispersion[J]. Journal of Composite Materials, 2011, 46(6):665-675.
[5] SHAN F L, GU Y Z, LI M, et al. Effect of deposited carbon nanotubes on interlaminar properties of carbon fiber-reinforced epoxy composites using a developed spraying processing[J]. Polymer Composites, 2013, 34(1):41-50.
[6] VAN DER HEIJDEN S, DAELEMANS L, DE SCHOENMAKER B, et al. Interlaminar toughening of resin transfer moulded glass fibre epoxy laminates by polycaprolactone electrospun nanofibres[J]. Composites Science and Technology, 2014, 104:66-73.
[7] STAHL J J, BOGDANOVICH A E, BRADFORD P D. Carbon nanotube shear-pressed sheet interleaves for Mode I interlaminar fracture toughness enhancement[J]. Composites Part A:Applied Science and Manufacturing, 2016, 80:127-137.
[8] DRANSFIELD K, BAILLIE C, MAI Y W. Improving the delamination resistance of CFRP by stitching-a review[J]. Composites Science and Technology, 1994, 50(3):305-317.
[9] CHEN L, IFJU P G, SANKAR B V. A novel double cantilever beam test for stitched composite laminates[J]. Journal of Composite Materials, 2001, 35(13):1137-1149.
[10] HOJO M, MATSUDA S, TANAKA M, et al. Mode I delamination fatigue properties of interlayer-toughened CF/epoxy laminates[J]. Composites Science and Technology, 2006, 66(5):665-675.
[11] 矫桂琼, 宁荣昌, 卢智先, 等. 层间增韧复合材料研究[J]. 宇航材料工艺, 2001, 31(4):36-39. JIAO G Q, NING R C, LU Z X, et al. A study on interleaved composites[J]. Aerospace Materials & Technology, 2001, 31(4):36-39(in Chinese).
[12] 陈利. 三维纺织技术在航空航天领域的应用[J]. 航空制造技术, 2008, 4:45-47. CHEN L. Development and application of 3D textile reinforcements in the aerospace field[J]. China Textile Leader, 2008, 4:45-47(in Chinese).
[13] MOURITZ A P, KOH T M. Re-evaluation of mode I bridging traction modelling for z-pinned laminates based on experimental analysis[J]. Composites Part B:Engineering, 2014, 56:797-807.
[14] ZHENG Y, CHENG X, YASIR B. Effect of stitching on plain and open-hole strength of CFRP laminates[J]. Chinese Journal of Aeronautics, 2012, 25(3):473-484.
[15] 高峰, 姚穆. 织物结构对增强复合材料层间断裂韧性的影响[J]. 西北纺织工学院学报, 2001, 15(2):257-259. GAO F, YAO M. Effect of plain fabric structure on delamination fracture toughness of woven-reinforced composite materials[J]. Journal of Northwest Textile Engineering College, 2001, 15(2):257-259(in Chinese).
[16] JAIN L K, MAI Y W. Analysis of stitched laminated ENF specimens for interlaminar mode II fracture toughness[J]. International Journal of Fracture, 1994, 68(3):219-244.
[17] BECKERMANN G W, PICKERING K L. Mode I and Mode II interlaminar fracture toughness of composite laminates interleaved with electrospun nanofibre veils[J]. Composites Part A:Applied Science and Manufacturing, 2015, 72:11-21.
[18] XU H, TONG X, ZHANG Y, et al. Mechanical and electrical properties of laminated composites containing continuous carbon nanotube film interleaves[J]. Composites Science and Technology, 2016, 127:113-118.
[19] XU X K, ZHANG Y, JIANG J, et al. In-situ curing of glass fiber reinforced polymer composites via resistive heating of carbon nanotube films[J]. Composites Science and Technology, 2017, 149:20-27.
[20] 李敏, 王绍凯, 顾轶卓, 等. 碳纳米管有序增强体及其复合材料研究进展[J]. 航空学报, 2014, 35(10):2699-2721. LI M, WANG S K, GU Y Z, et al. Research progress on macroscopic carbon nanotube assemblies and their composite[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(10):2699-2721(in Chinese).
[21] SALVETAT J P, BRIGGS G A D, BONRAD J M, et al. Elastic and shear moduli of single-walled carbon nanotube ropes[J]. Physical Review Letters, 1999, 82(5):944.
[22] THOSTENSON E T, REN Z, CHOU T W. Advances in the science and technology of carbon nanotubes and their composites:A review[J]. Composites Science and Technology, 2001, 61(13):1899-1912.
[23] SIEGFRIED M, TOLA C, CLAES M, et al. Impact and residual after impact properties of carbon fiber/epoxy composites modified with carbon nanotubes[J]. Composite Structures, 2014, 111:488-496.
[24] BEKYAROVA E, THOSTENSON E T, YU A, et al. Multiscale carbon nanotube-carbon fiber reinforcement for advanced epoxy composites[J]. Langmuir, 2007, 23(7):3970-3974.
[25] ASHRAFI B, GUAN J, MIRJALILI V, et al. Enhancement of mechanical performance of epoxy/carbon fiber laminate composites using single-walled carbon nanotubes[J]. Composites Science and Technology, 2011, 71(13):1569-1578.
[26] LI N, WANG G D, MELLY S K, et al. Interlaminar properties of GFRP laminates toughened by CNTs buckypaper interlayer[J]. Composite Structures, 2019, 208:13-22.
[27] MATHUR R B, CHATTERJEE S, SINGH B P. Growth of carbon nanotubes on carbon fibre substrates to produce hybrid/phenolic composites with improved mechanical properties[J]. Composites Science and Technology, 2008, 68(7-8):1608-1615.
[28] VEEDU V P, CAO A, LI X, et al. Multifunctional composites using reinforced laminae with carbon-nanotube forests[J]. Nature Materials, 2006, 5(6):457.
[29] GODARA A, MEZZO L, LUIZI F, et al. Influence of carbon nanotube reinforcement on the processing and the mechanical behaviour of carbon fiber/epoxy composites[J]. Carbon, 2009, 47(12):2914-2923.
[30] 范雨娇, 顾轶卓, 邓火英, 等. 碳纳米管加入方式对碳纤维/环氧树脂复合材料层间性能的影响[J]. 复合材料学报, 2015(2):332-340. FAN Y J, GU Y Z, DENG H Y, et al. Effect of adding method of carbon nanotube on interlaminar property of carbon fiber/epoxy composites[J]. Acta Materiae Compositae Sinica, 2015(2):332-340(in Chinese).
[31] 张远,于妍妍,何静宇,等. 碳纳米管薄膜增强复合材料I型断裂韧性研究[J]. 炭素技术,2018, 37(4):15-20. ZHANG Y, YU Y Y, HE J Y, et al. The model I fracture toughness of composites enhanced by using carbon nanotube film[J]. Carbon Techniques, 2018, 37(4):15-20(in Chinese).
[32] WANG S, HALDANE D, LIANG R, et al. Nanoscale infiltration behaviour and through-thickness permeability of carbon nanotube buckypapers[J]. Nanotechnology, 2013, 24(1):015704.
[33] DAELEMANS L, VAN DER HEIJDEN S, DE BAERE I, et al. Using aligned nanofibres for identifying the toughening micromechanisms in nanofibre interleaved laminates[J]. Composites Science and Technology, 2016, 124:17-26.