电子电气工程与控制

相对失控翻滚目标悬停的自适应模糊滑模控制

  • 刘将辉 ,
  • 李海阳 ,
  • 张政 ,
  • 李晓超
展开
  • 国防科技大学 空天科学学院, 长沙 410073

收稿日期: 2018-06-07

  修回日期: 2018-11-09

  网络出版日期: 2019-02-22

基金资助

国家自然科学基金(11472301)

Adaptive fuzzy sliding mode control for body-fixed hovering over uncontrolled tumbling satellite

  • LIU Jianghui ,
  • LI Haiyang ,
  • ZHANG Zheng ,
  • LI Xiaochao
Expand
  • College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China

Received date: 2018-06-07

  Revised date: 2018-11-09

  Online published: 2019-02-22

Supported by

National Natural Science Foundation of China (11472301)

摘要

研究了含有系统不确定性和外部干扰的追踪器相对失控翻滚目标悬停的六自由度耦合控制问题。首先,在追踪器本体坐标系中建立了非线性的六自由度耦合的一体化动力学模型,将悬停控制问题转化为相对位置和相对姿态控制问题。再基于模糊逼近原理设计了一种自适应的模糊滑模控制器,该控制器能够有效克服系统的模型不确定性和外部干扰的影响,并能消除传统的抖振问题。由Lyapunov方法导出了模糊自适应律并证明了闭环系统的稳定性。数值仿真验证了所提的自适应模糊滑模控制器的有效性。

本文引用格式

刘将辉 , 李海阳 , 张政 , 李晓超 . 相对失控翻滚目标悬停的自适应模糊滑模控制[J]. 航空学报, 2019 , 40(5) : 322430 -322430 . DOI: 10.7527/S1000-6893.2019.22430

Abstract

The six degree-of-freedom coupling control of the chaser relative to the uncontrolled tumbling satellite with system uncertainties and external disturbances is studied in this paper. Initially, a non-linear six-degree-of-freedom coupled integrated dynamics model is established in the chaser's body coordinate system, which transforms the hovering control problem into relative position and relative attitude control problems. Then, an adaptive fuzzy sliding mode controller is designed based on the principle of fuzzy approximation. The controller can effectively overcome the uncertainty of the system model and the influence of external disturbance, eliminating the traditional chattering problem. The fuzzy adaptive law is derived from the Lyapunov method and the stability of the closed-loop system is proved. Numerical simulations verify the effectiveness of the proposed adaptive fuzzy sliding mode controller.

参考文献

[1] 朱战霞, 马家瑨, 樊瑞山. 基于螺旋理论描述的空间相对运动姿轨同步控制[J]. 航空学报, 2016, 37(9):2788-2798. ZHU Z X, MA J J, FAN R S. Synchronization control of relative motion for spacecraft with screw theory-based description[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2788-2798(in Chinese).
[2] 朱亚文, 闫野. 椭圆轨道卫星空间任意位置悬停的方法[J]. 中国空间科学技术, 2010, 30(6):17-23. ZHU Y W, YAN Y. Hovering method at any selected position over space target on elliptical orbit[J]. Chinese Space Science and Technology, 2010, 30(6):17-23(in Chinese).
[3] 周稼康, 胡庆雷, 马广富, 等. 带时变通信时间延迟的卫星编队姿态协同自适应L2增益控制[J]. 航空学报, 2011, 32(2):321-329. ZHOU J K, HU Q L, MA G F, et al. Adaptive L2-gain cooperative attitude control of satellite formation flying with time-varying delay[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(2):321-329(in Chinese).
[4] 王功波, 郑伟, 孟云鹤, 等. 相对非圆轨道的悬停控制方法研究[J]. 中国科学(技术科学), 2011,54(11):1505-1511. WANG G B, ZHENG W, MENG Y H, et al. Research on hovering control scheme to non-circular orbit[J]. Science in China Series E (Technological Sciences), 2011, 54(11):1505-1511(in Chinese).
[5] 王剑颖, 梁海朝, 孙兆伟, 等. 基于对偶数的航天器多特征融合相对导航算法[J]. 航空学报, 2012, 33(10):1881-1892. WANG J Y, LIANG H C, SUN Z W, et al. A multi-cue-based relative navigation algorithm for spacecraft via dual number representation[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(10):1881-1892(in Chinese).
[6] 吴锦杰, 刘昆, 韩大鹏. 考虑输入饱和的航天器相对运动鲁棒自适应控制[J]. 航空学报, 2013, 34(4):890-901. WU J J, LIU K, HAN D P. Robust adaptive control for relative motion of spacecraft under input saturation[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(4):890-901(in Chinese).
[7] SUN L, HUO W, JIAO Z. Robust adaptive relative position and attitude control for spacecraft autonomous proximity[J]. ISA Transactions, 2016, 63:11-19.
[8] BROSCHART S B, SCHEERES D J. Control of hovering spacecraft near small bodies:Application to asteroid 25143 Itokawa[J]. Journal of Guidance Control & Dynamics, 2005, 28(2):343-354.
[9] SCHEERES D J. Stability of hovering orbits around small bodies[J]. Advances in the Astronautical Sciences, 1999, 102:855-875.
[10] SCHEERES D J. Orbital motion in strongly perturbed environments[M]. Berlin:Springer, 2012.
[11] SAWAI S, SCHEERES D J, BROSCHART S B. Control of hovering spacecraft using altimetry[J]. Journal of Guidance Control & Dynamics, 2000, 25(4):786-795.
[12] BROSCHART S B, SCHEERES D J. Boundness of spacecraft hovering under dead-band control in time-invariant systems[J]. Journal of Guidance Control & Dynamics, 2007, 30(2):601-610.
[13] ZENG X, GONG S, LI J, et al. Solar sail body-fixed hovering over elongated asteroids[J]. Journal of Guidance Control & Dynamics, 2016, 39(6):1-9.
[14] BERRY K, SUTTERY B, MAYZ A, et al. OSIRIS-REx Touch-And-Go (TAG) mission design and analysis[C]//36th Annual AAS Guidance and Control Conference, 2013.
[15] GAUDET B, FURFARO R. Robust spacecraft hovering near small bodies in environments with unknown dynamics using reinforcement learning[C]//AIAA/AAS Astrodynamics Specialist Conference. Reston, VA:AIAA, 2012.
[16] KUBOTA T, HASHIMOTO T, UO M, et al. Maneuver strategy for station keeping and global mapping around an asteroid[C]//AIAA/AAS Spaceflight Mechanics. Reston, VA:AIAA, 2001:769-780.
[17] LEE D, SANYAL A K, BUTCHER E A, et al. Almost global asymptotic tracking control for spacecraft body-fixed hovering over an asteroid[J]. Aerospace Science & Technology, 2014, 38(1):105-115.
[18] LEE D, SANYAL A K, BUTCHER E A, et al. Finite-time control for spacecraft body-fixed hovering over an asteroid[J]. IEEE Transactions on Aerospace & Electronic Systems, 2015, 51(1):506-520.
[19] LEE D, SANYAL A K, BUTCHER E A, et al. Spacecraft hovering control for body-fixed hovering over a uniformly rotating asteroid using geometric mechanics[J]. Advances in the Astronautical Sciences, 2014, 150:1757-1773.
[20] 谭天乐, 武海雷. 轨道交会、悬停及绕飞控制的解析解方法[J]. 宇航学报, 2016, 37(11):1333-1341. TAN T L, WU H L. Analytical solution method for orbit rendezvous,hovering and fly-around control[J]. Journal of Astronautics, 2016, 37(11):1333-1341(in Chinese).
[21] 谭天乐. 椭圆轨道交会、悬停与绕飞的全状态反馈控制[J]. 宇航学报, 2016, 37(7):811-818. TAN T L. Full state feedback control of rendezvous,hovering and fly-around in elliptical orbit[J]. Journal of Astronautics, 2016, 37(7):811-818(in Chinese).
[22] 薛白, 佘志坤, 余婧, 等. 基于混杂系统的空间飞行器悬停控制[J]. 中国空间科学技术, 2010, 30(2):61-67. XUE B, SHE Z K, YU J, et al. Control on the spacecraft hovering based on hybrid systems[J]. Chinese Space Science and Technology, 2010, 30(2):61-67(in Chinese).
[23] 程博, 袁建平, 马卫华. 基于状态转移矩阵的航天器多脉冲悬停方法[J]. 中国空间科学技术, 2016, 36(5):81-87. CHENG B, YUAN J P, MA W H. Spacecraft multiple-pulse hovering method based on state transition matrix[J]. Chinese Space Science and Technology, 2016, 36(5):81-87(in Chinese).
[24] 徐帷, 武海雷, 卢山, 等. 航天器超近距离绕飞、悬停的姿态轨道联合控制方法研究[C]//第32届中国控制会议, 2013. XU W, WU H L, LU S, et al. Spacecraft attitude-orbit combined control analysis for flying-around and hovering task in super-close relative distance[C]//the 32nd Chinese Control Conference, 2013(in Chinese).
[25] 宋旭民, 范丽, 陈勇, 等. 相对空间目标任意位置悬停闭环控制方法研究[J]. 中国空间科学技术, 2010, 30(1):41-45. SONG X M, FAN L, CHEN Y, et al. Study of close-loop hovering method at any selected position to space target[J]. Chinese Space Science and Technology, 2010, 30(1):41-45(in Chinese).
[26] DANG Z, WANG Z, ZHANG Y. Modeling and analysis of relative hovering control for spacecraft[J]. Journal of Guidance Control & Dynamics, 2014, 37(4):1091-1102.
[27] SUN L, HUO W. Robust adaptive control of spacecraft proximity maneuvers under dynamic coupling and uncertainty[J]. Advances in Space Research, 2015, 56(10):2206-2217.
[28] SHUSTER M D. A survey of attitude representation[J]. Journal of Astronautical Sciences, 1993, 41(4):439-517.
[29] HAM W. Adaptive fuzzy sliding mode control of nonlinear system[J]. IEEE Transactions on Fuzzy Systems, 1998, 6(2):315-321.
文章导航

/