综述

中国航天器新型热控系统构建进展评述特约

  • 宁献文 ,
  • 李劲东 ,
  • 王玉莹 ,
  • 蒋凡
展开
  • 北京空间飞行器总体设计部 空间热控技术北京市重点实验室, 北京 100094

收稿日期: 2018-12-26

  修回日期: 2019-01-10

  网络出版日期: 2019-01-24

基金资助

国家自然科学基金(11472040)

Review on construction of new spacecraft thermal control system in China

  • NING Xianwen ,
  • LI Jindong ,
  • WANG Yuying ,
  • JIANG Fan
Expand
  • Beijing Key Laboratory of Space Thermal Control Technology, Beijing Institute of Spacecraft System Engineering(ISSE), Beijing 100094, China

Received date: 2018-12-26

  Revised date: 2019-01-10

  Online published: 2019-01-24

Supported by

National Natural Science Foundation of China (11472040)

摘要

热控是由工程热物理与航天技术相互促进发展而形成的一门交叉学科,直接影响着航天器的总体设计水平。随着中国航天事业的飞速发展,对热控设计提出了越来越高的要求,并已成为制约中国航天器设计水平的关键瓶颈技术之一。本文综合评述了中国航天器新型热控系统构建的最新研究成果和进展,具体包括:针对载人航天、探月工程等不同任务需求,构建出了相应的新型热控系统,开发出了以泵驱单相流体回路、重力驱动两相流体回路、环路热管与水升华器等为代表的一批新型热控产品。在此基础上,结合中国航天工程实际需求,指出了今后的主要研究方向。

本文引用格式

宁献文 , 李劲东 , 王玉莹 , 蒋凡 . 中国航天器新型热控系统构建进展评述特约[J]. 航空学报, 2019 , 40(7) : 22874 -022874 . DOI: 10.7527/S1000-6893.2019.22874

Abstract

Thermal control is an interdisciplinary subject formed by the mutual promotion of engineering thermophysics and aerospace technology, directly affecting the overall design level of spacecraft. With the rapid development of space industry, thermal control design has appealed to higher requirement that becomes one of the key bottlenecks restricting the level spacecraft design. In this paper, the latest research and progress in the construction of the new thermal control system for spacecraft in China are reviewed. Existing research results show that the new thermal control systems are constructed to meet the needs of different tasks such as manned spaceflight and lunar exploration, developing a number of new thermal products, such as pumped fluid loops, closed two-phase thermosyphons, and loop heat pipe and sublimator. In the end, based on the requirement of the domestic space engineering, this paper outlines the main research directions in thermal control technologies.

参考文献

[1] 苗建印, 钟奇, 赵啟伟, 等. 航天器热控制技术[M]. 北京:北京理工大学出版社, 2018. MIAO J Y, ZHONG Q, ZHAO Q W, et al. Spacecraft thermal control technology[M]. Beijing:Beijing Institute of Technology Press, 2018(in Chinese).
[2] 侯增祺, 胡金刚. 航天器热控制技术——原理及其应用[M]. 北京:中国科学技术出版社, 2007. HOU Z Q, HU J G. Spacecraft thermal control technology-Theory and application[M]. Beijing:China Science Technology Press, 2007(in Chinese).
[3] 闵桂荣, 郭舜. 航天器热控制[M]. 第二版. 北京:科学出版社, 1998. MIN G R, GUO S. Spacecraft thermal control[M]. 2nd ed. Beijing:Science Press, 1998(in Chinese).
[4] GILMORE D G. Spacecraft thermal control handbook[M]. 2nd ed. California:The Aerospace Press·El Segundo, 2002.
[5] 张加迅, 宁献文. 分舱耦合体系下的新型卫星热控平台技术[J]. 航天器工程, 2008, 17(2):53-58. ZHAHG J X, NING X W. New satellite thermal control platform technique with coupled separated-module thermal control system[J]. Spacecraft Engineering, 2008, 17(2):53-58(in Chinese).
[6] 宁献文, 王玉莹, 宋馨, 等. 卫星平台模块化柔性热控体系结构[J]. 航天器工程, 2012, 21(2):50-55. NING X W, WANG Y Y, SONG X, et al. Modular flexible thermal control architecture for satellite bus[J]. Spacecraft Engineering, 2012, 21(2):50-55(in Chinese).
[7] 余后满, 范含林. 航天器总体设计技术成就与展望[J]. 航天器工程, 2008, 17(4):1-5. YU H M, FAN H L. Achievements and prospect of spacecraft system design technology[J]. Spacecraft Engineering, 2008, 17(4):1-5(in Chinese).
[8] 范含林. 航天器热控制技术发展综述[C]//中国宇航学会飞行器总体专业委员会2004年学术研讨会, 2004. FAN H L. Development of spacecraft thermal control technology[C]//The 2004 Academy Conference of General Professional Committee of Aerospace Vehicles of China Astronautical Society, 2004(in Chinese).
[9] 刘庆志, 任红艳, 赵欣. 实践十号返回式卫星热设计改进及效果[C]//第十三届空间热物理会议, 2017. LIU Q Z, REN H Y, ZHAO X. Improvement and effect of thermal design for PRACTICE No.10 returning satellite[C]//13th Space Thermophysics Society Congress, 2017(in Chinese).
[10] MATTHIJSSEN R, VAN PUT P, VAN DER LIST M C A M. Development of an advanced mechanically pumped fluid loop for thermal control of large future telecommunication platforms[R]. De Wijper:Bradford Engineering, 2005.
[11] BIRUR G C. JPL advanced thermal control technology roadmap[R]. Pasadena, CA:Jet Propulsion Laboratory of California Institute of Technology, 2005.
[12] SHEN F, DROLEN B, PRABHU J, et al. Life mechanical fluid pump for space applications:AIAA-2005-0273[R]. Reston, VA:AIAA, 2005.
[13] 李劲东, 张加迅. 热管理技术在大型航天器热设计中的应用[C]//第五届空间热物理会议, 2000. LI J D, ZHANG J X. Application of thermal management technology in thermal design of large spacecraft[C]//5th Space Thermophysics Society Congress, 2000(in Chinese).
[14] 范含林, 黄家荣. 载人航天器热控制技术问题探讨[J]. 载人航天, 2010, 16(2):40-44. FAN H L, HUANG J R. Study on thermal control technologies for manned spacecrafts[J]. Manned Spaceflight, 2010, 16(2):40-44(in Chinese).
[15] 范含林. 载人航天器热管理技术发展综述[J]. 航天器工程, 2007, 16(1):28-32. FAN H L. Manned spacecraft thermal management technologies development overview[J]. Spacecraft Engineering, 2007, 16(1):28-32(in Chinese).
[16] 满广龙, 曹剑峰, 孟繁孔. 交会对接组合体热管理研究[J]. 航天器工程, 2011, 20(6):32-37. MAN G L, CAO J F, MENG F K. Research on a thermal management system for docking spacecraft combination[J]. Spacecraft Engineering, 2011, 20(6):32-37(in Chinese).
[17] 付仕明, 徐小平, 裴一飞. 空间站集成全局热数学模型的建模和分析[J]. 航天器环境工程, 2010, 27(1):75-79. FU S M, XU X P, PEI Y F. The integrated overall thermal mathematical model of a space station[J]. Spacecraft Environment Engineering, 2010, 27(1):75-79(in Chinese).
[18] 范含林, 黄家荣, 刘庆志, 等. 载人运输飞船流体回路方案研究[J]. 中国空间科学技术, 2007, 27(5):38-43. FAN H L, HUANG J R, LIU Q Z, et al. Scheme of fluid loop system on manned spacecraft for transport[J]. Chinese Space Science and Technology, 2007, 27(5):38-43(in Chinese).
[19] 黄家荣, 范宇峰, 范含林. 载人运输飞船流体回路试验研究[J]. 中国空间科学技术, 2010, 30(1):65-71. HUANG J R, FAN Y F, FAN H L. Experiment study of fluid loop system on manned spaceship[J]. Chinese Space Science and Technology, 2007, 30(1):65-71(in Chinese).
[20] 黄家荣, 范宇峰, 刘炳清, 等. 神舟七号飞船热控分系统设计和在轨性能评估[J]. 中国空间科学技术, 2009, 29(5):1-7. HUANG J R, FAN Y F, LIU B Q, et al. Design and on-orbit performance evaluation of thermal control system for SHENZHOU-7 spaceship[J]. Chinese Space Science and Technology, 2009, 29(5):1-7(in Chinese).
[21] 黄家荣, 范宇峰, 禹颂耕, 等. 神舟七号飞船单相热控流体回路在轨性能评价[J]. 航天器工程, 2009, 18(4):37-43. HUANG J R, FAN Y F, YU S G, et al. On-orbit performance evaluation of single-phase fluid loop system for shenzhou-7 spaceship[J]. Spacecraft Engineering, 2009, 18(4):37-43(in Chinese).
[22] 于新刚, 黄家荣, 张立, 等. 神舟九号热控设计及在轨工作评价[J]. 载人航天, 2013, 19(2):25-29. YU X G, HUANG J R, ZHANG L, et al. Thermal design and on-orbit performance evaluation of Shenzhou 9 Spaceship[J]. Manned Spaceflight, 2013, 19(2):25-29(in Chinese).
[23] ANDERSON G, MARTIN C E. Evaluation and application of Apollo ECLS/ATCS systems to future manned missions:AIAA-2005-0703[R]. Reston, VA:AIAA, 2005.
[24] 徐小平, 李劲东, 范含林. 大型航天器热管理系统集成分析[J]. 中国空间科学技术, 2004, 24(4):11-17. XU X P, LI J D, FAN H L. Integrated analysis of thermal management system in large spacecraft[J]. Chinese Space Science and Technology, 2004, 24(4):11-17(in Chinese).
[25] 陈自发, 徐云东, 郭涛, 等. 国际空间站内部主动热控系统[J]. 上海航天, 2013, 30(3):27-32. CHEN Z F, XU Y D, GUO T, et al. Internal active thermal control system of international space station[J]. Aerospace Shanghai, 2013, 30(3):27-32(in Chinese).
[26] 向艳超, 邵兴国, 刘自军, 等. 嫦娥一号卫星热控系统及其特点[J]. 航天器工程, 2008, 17(5):50-55. XIANG Y C, SHAO X G, LIU Z J, et al. Thermal control system and its characteristics of Change-1[J]. Spacecraft Engineering, 2008, 17(5):50-55(in Chinese).
[27] 邵兴国, 向艳超, 谭沧海. 嫦娥一号卫星热控设计中热管的应用及验证[J]. 航天器工程, 2008, 17(1):63-67. SHAO X G, XIANG Y C, TAN C H. Heat pipe applications and test in Chang'e-1 satellite[J]. Spacecraft Engineering, 2008, 17(1):63-67(in Chinese).
[28] 刘自军, 向艳超, 斯东波, 等. 嫦娥三号探测器热控系统设计与验证[J]. 中国科学:技术科学, 2014, 44(2):589-596. LIU Z J, XIANG Y C, SI D B, et al. Design and verification of Change-3 thermal control system[J]. Scientia Sinica:Technologica, 2014, 44(2):589-596(in Chinese).
[29] 向艳超, 陈建新, 张冰强. 嫦娥三号玉兔巡视器热控制[J]. 宇航学报, 2015, 36(10):1203-1209. XIANG Y C, CHEN J X, ZHANG B Q. Thermal control for jade rabbit rover of Chang' E-3[J]. Journal of Astronautics, 2015, 36(10):1203-1209(in Chinese).
[30] 张红星, 苗建印, 王录, 等. 嫦娥三号两相流体回路的地面试验验证方法及试验结果分析[J]. 中国科学:技术科学, 2014, 44(4):353-360. ZHANG H X, MIAO J Y, WANG L, et al. Ground test method and results of closed two-phase thermosyphons for the moon exploration spacecraft Chang'E-3[J]. Scientia Sinica:Technologica, 2014, 44(4):353-360(in Chinese).
[31] 宁献文, 苏生, 陈阳, 等. 月地高速再入返回器热控设计及实现[J]. 中国科学:技术科学, 2015, 45(2):145-150. NING X W, SU S, CHEN Y, et al. Design and implementation of circumlunar return and reentry spacecraft thermal control system[J]. Scientia Sinica:Technologica, 2015, 45(2):145-150(in Chinese).
[32] 宁献文, 蒋凡, 张栋, 等. 月球无人采样返回探测器一体化热管理方案研究[J]. 航天器环境工程, 2017, 34(6):598-603. NING X W, JIANG F, ZHANG D, et al. Research on an integrated thermal management scheme for lunar robotic sampling and return probe[J]. Spacecraft Environment Engineering, 2017, 34(6):598-603(in Chinese).
[33] 王玉莹, 钟奇, 宁献文, 等. 水升华器空间应用研究[J]. 航天器工程, 2013, 22(3):105-112. WANG Y Y, ZHONG Q, NING X W, et al. Overview of space application and development of water sublimator[J]. Spacecraft Engineering, 2013, 22(3):105-112(in Chinese).
[34] 王玉莹. 空间水升华器相变传热传质动态特性及稳定性研究[D]. 北京:中国空间技术研究院, 2014. WANG Y Y. Study on the transient performance and stability of phase change heat and mass transfer of space water sublimator[D]. Beijing:China Academy of Space Technology, 2014(in Chinese).
[35] WANG Y Y, ZHONG Q, NING X W, et al. Transient study about the heat transfer of sublimator combined with fluid loop[C]//64th International Astronautical Congress, 2013.
[36] 王玉莹, 钟奇, 宁献文, 等. 具有恒热流边界的水升华器启动特性实验研究[J]. 航空学报, 2016, 35(6):57-62. WANG Y Y, ZHONG Q, NING X W, et al. Experiment on startup performance of sublimator with constant heat flux boundary[J]. Acta Aeronautica et Astronautica Sinica, 2016, 35(6):57-62(in Chinese).
[37] WANG Y Y, ZHONG Q, LI J D, et al. Numerical and experimental study on the heat and mass transfer of porous plate water sublimator with constant heat flux boundary condition[J]. Applied Thermal Engineering, 2014, 67:469-479.
[38] 刘畅, 宁献文, 苗建印, 等. 多孔板结冰"自强化"效应对水升华器性能影响的实验研究[J]. 航空学报, 2018, 39(9):122046. LIU C, NING X W, MIAO J Y, et al. Experimental research on effects of porous plate's frost "self-strengthen" on water sublimator[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(9):122046(in Chinese).
[39] BIRUR G C, BHANDARI P. Mars pathfinder active thermal control system:Group and flight performance of a mechanically pumped cooling loop:AIAA-1997-2469[R]. Reston, VA:AIAA, 1997.
[40] BIRUR G C, BHANDARI P. Long term life testing of a mechanically pumped cooled loop for spacecraft thermal control:AIAA-1997-2470[R]. Reston, VA:AIAA, 1997.
[41] BHANDARI P, DUDIK B, BIRUR G, et al. Mars science laboratory launch pad thermal control[C]//Proceedings of the 41st International Conference on Environmental Systems. Reston, VA:AIAA, 2011.
[42] PARIS A D, KELLY F P, KEMPENAAR J E, et al. In-flight performance of the Mars Science Laboratory spacecraft cruise phase thermal control systems[C]//Proceedings of the 42nd International Conference on Environmental Systems. Reston, VA:AIAA, 2012.
[43] BIRUR G C, BHANDARI P, BAME D, et al. From concept to flight:An active fluid loop based thermal control system for Mars Science Laboratory Rover[C]//Proceedings of the 42nd International Conference on Environmental Systems. Reston, VA:AIAA, 2012.
[44] 贾阳, 刘强, 向艳超, 等. 深空探测对航天器热控技术的推动[J]. 航天器环境工程, 2016, 33(2):115-120. JIA Y, LIU Q, XIANG Y C, et al. The role of deep space exploration in promoting spacecraft thermal control technologies[J]. Spacecraft Environment Engineering, 2016, 33(2):115-120(in Chinese).
[45] 宁献文, 张加迅. 基于泵变频调速的航天器热控制技术[J]. 中国空间科学技术, 2011, 31(2):47-51. NING X W, ZHANG J X. Spacecraft thermal control technology based on variable frequency pump[J]. Chinese Space Science and Technology, 2011, 31(2):47-51(in Chinese).
[46] NING X W, WANG Y Y, ZHANG J X, et al. An equivalent ground thermal test method for single-phase fluid loop space radiator[J]. Chinese Journal of Aeronautics, 2015, 28(1):86-92.
[47] 于新刚, 徐侃, 苗建印, 等. 高热流散热泵驱两相流体回路设计及飞行验证[J]. 宇航学报, 2017, 38(2):192-197. YU X G, XU K, MIAO J Y, et al. Design and on-board validation of pumped two-phase fluid loop for high heat flux removal[J]. Journal of Astronautics, 2017, 38(2):192-197(in Chinese).
[48] 孙伟伟, 顾燕萍, 陈钢, 等. 空间微泵驱动主动流体回路热控技术研究进展[C]//第十二届空间热物理会议, 2015. SUN W W, GU Y P, CHENG G, et al. Research evolution on thermal control technology for active fluid driven by space micropump[C]//12th Space Thermophysics Society Congress, 2015(in Chinese).
[49] LI Y Z, LI M M, LEE K M. A dual-driven intelligent combination control of heat pipe space cooling system[J]. Chinese Journal Aeronautics, 2012, 25(4):566-574.
[50] WANG J, LI Y Z, WANG J. Transient performance and intelligent combination control of a novel spray cooling loop system[J]. Chinese Journal of Aeronautics, 2013, 26(5):1173-1181.
[51] 徐向华, 程雪涛, 梁新刚. 载人航天器主动热控制系统流体回路的优化设计[J]. 宇航学报, 2011, 32(10):2285-2293. XU X H, CHENG X T, LIANG X G. Design and optimization for fluid loops of active thermal control system in manned spacecraft[J]. Journal of Astronautics, 2011, 32(10):2285-2293(in Chinese).
[52] YOUNG Q E, STUCKER B, GILLESPIE T, et al. Modular thermal control architecture for modular spacecraft:AIAA-2008-1959[R]. Reston, VA:AIAA, 2008.
[53] SWANSON T D, BIRUR G C. NASA thermal control technologies for robotic spacecraft[J]. Applied Thermal Engineering, 2003, 23:1055-1065.
[54] LEE S H, MUDAWAR A I, HASAN M M. Thermal analysis of hybrid single-phase, two-phase and heat pump thermal control system (TCS) for future spacecraft[J]. Applied Thermal Engineering, 2016, 100:190-214.
[55] GANAPATHI G B, GANI B, GAJANANA B, et al. Two phase vs. single phase thermal loop trades for exploration mission LAT Ⅱ architecture:SAE 2008-01-1958[R]. 2008.
[56] 陈江平, 黄家荣, 范宇峰, 等. "阿波罗"登月飞行器热控系统方案概述[J]. 载人航天, 2012, 18(1):40-47. CHEN J P, HUANG J R, FAN Y F, et al. An overview on thermal control system design of Apollo[J]. Manned Spaceflight, 2012, 18(1):40-47(in Chinese).
[57] METTS J G, KLAUS D M. Equivalent system mass analysis for space suit thermal control[C]//41st International Conference on Environmental Systems. Reston, VA:AIAA, 2011.
[58] STEPHAN R A. Overview of the Altair lunar lander thermal control system design and the impacts of global access[C]//Proceeding of the 41st International Conference on Environmental Systems, 2011.
文章导航

/