电子电气工程与控制

柔性航天器振动主动抑制及姿态控制

  • 张秀云 ,
  • 宗群 ,
  • 窦立谦 ,
  • 刘文静
展开
  • 1. 天津大学 电气自动化与信息工程学院, 天津 300072;
    2. 北京控制工程研究所 空间智能控制国家重点实验室, 北京 100190

收稿日期: 2018-07-02

  修回日期: 2018-08-27

  网络出版日期: 2018-12-27

基金资助

国家自然科学基金(61673294,61573060,61773278)

Active vibration suppression and attitude control for flexible spacecraft

  • ZHANG Xiuyun ,
  • ZONG Qun ,
  • DOU Liqian ,
  • LIU Wenjing
Expand
  • 1. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China;
    2. Science and Technology on Space Intelligent Control Laboratory, Beijing Institute of Control Engineering, Beijing 100190, China

Received date: 2018-07-02

  Revised date: 2018-08-27

  Online published: 2018-12-27

Supported by

National Natural Science Foundation of China (61673294, 61573060, 61773278)

摘要

针对柔性航天器柔性附件振动主动抑制及姿态高精度快速稳定问题,研究了一种输入成形器(IS)-自适应有限时间干扰观测器(FDO)-有限时间积分滑模控制器综合的设计方法。首先,基于柔性模态的频率及阻尼信息,获得能够有效抑制柔性振动的输入成形器形式,并与系统参考输入进行卷积,得到期望参考输入;其次,基于航天器动力学模型,设计一种新型的自适应有限时间干扰观测器,避免了综合干扰上界必须已知的约束,且保证干扰估计误差有限时间收敛至零,实现对干扰及残余振动影响的快速精确估计;最后,基于观测器的估计值,设计多变量有限时间积分滑模控制器,保证对期望参考输入的高精度快速跟踪控制,并进行严格的稳定性证明。仿真结果表明,该综合设计策略能够保证柔性附件振动抑制75%,姿态稳定度达到10-4数量级。

本文引用格式

张秀云 , 宗群 , 窦立谦 , 刘文静 . 柔性航天器振动主动抑制及姿态控制[J]. 航空学报, 2019 , 40(4) : 322503 -322503 . DOI: 10.7527/S1000-6893.2018.22503

Abstract

A comprehensive design of input shaper (IS)-Finite time Disturbance Observer (FDO)-integral sliding mode controller is proposed for the active vibration suppression of flexible appendages and attitude control of flexible spacecraft, with high accuracy and fast convergence time. Firstly, an IS, which can be used to reduce flexible vibration, is obtained based on the frequency and damping information of flexible modes. The IS is convolved with reference inputs to get the desired reference commands. Then, based on the spacecraft dynamic model, a novel adaptive FDO is designed to guarantee accurate estimation of disturbance and residual vibration, which avoids the constraint that the upper bound must be known in advance and drives the estimation errors to zero in finite time. Finally, multivariable finite-time integral sliding mode controller is designed based on the estimations of FDO, which ensures the fast and high-precision tracking control of desired reference commands, and the strict stability proof is given. Simulation results show that the comprehensive design strategy can guarantee that the flexible vibration is suppressed by 75% and the attitude stability degree is up to 10-4.

参考文献

[1] WU S N, CHU W M, MA X, et al. Multi-objective integrated robust H control for attitude tracking of a flexible spacecraft[J]. Acta Astronautica, 2018, 151:80-87.
[2] FUY, LIU Y, HUANG D. Boundary output feedback control of a flexible spacecraft system with input constraint[J]. IET Control Theory & Applications, 2018, 12(5):571-581.
[3] WUB L, WANG D W, POH E K. Decentralized sliding-mode control for attitude synchronization in spacecraft formation[J]. International Journal of Robust and Nonlinear Control, 2013, 23(11):1183-1197.
[4] 岳宝增, 李晓玉. 航天器平移及姿态机动自适应终端滑模控制[J]. 动力学与控制学报, 2018, 16(4):332-336. YUE B Z, LI X Y. Adaptive terminal sliding mode control for spacecraft with translation and attitude maneuvers[J]. Journal of Dynamics and Control, 2018, 16(4):332-336(in Chinese).
[5] SHTESSELY, TALEB M, PLESTAN F. A novel adaptive-gain supertwisting sliding mode controller:Methodology and application[J]. Automatica, 2012, 48(5):759-769.
[6] ZHU Z, XIA Y, FU M. Adaptive sliding mode control for attitude stabilization with actuator saturation[J]. IEEE Transactions on Industrial Electronics, 2011, 58(10):4898-4907.
[7] CONG B, CHEN Z, LIU X. Disturbance observer-based adaptive integral sliding mode control for rigid spacecraft attitude maneuvers[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2013, 227(10):1660-1671.
[8] JIN E, SUN Z. Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control[J]. Aerospace Science and Technology, 2008, 12(4):324-330.
[9] FENG Y, YU X, HAN F. On nonsingular terminal sliding-mode control of nonlinear systems[J]. Automatica, 2013, 49(6):1715-1722.
[10] YANG L, YANG J. Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems[J]. International Journal of Robust and Nonlinear Control, 2011, 21(16):1865-1879.
[11] LU K, XIA Y Q. Finite-time attitude stabilization for rigid spacecraft[J]. International Journal of Robust and Nonlinear Control, 2015, 25(1):32-51.
[12] ZONG Q, ZHANG X Y, SHAO S K, et al. Disturbance observer-based fault-tolerant attitude tracking control for rigid spacecraft with finite-time convergence[J/OL]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, (2017-11-19)[2018-06-13]. https://doi.org/10.1177/0954410017740918.
[13] SHAO S K, ZONG Q, TIAN B L, et al. Finite-time sliding mode attitude control for rigid spacecraft without angular velocity measurement[J]. Journal of the Franklin Institute, 2017, 354(12):4656-4674.
[14] 宗群, 邵士凯, 张秀云, 等. 刚体航天器有限时间输出反馈姿态跟踪控制[J]. 哈尔滨工业大学学报, 2017, 46(9):136-143. ZONG Q, SHAO S K, ZHANG X Y, et al. Finite-time output feedback attitude tracking control for rigid spacecraft[J]. Journal of Harbin Institute of Technology, 2017, 46(9):136-143(in Chinese).
[15] XIAO B, HU Q L, FRISWELL M I. Active fault-tolerant attitude control for flexible spacecraft with loss of actuator effectiveness[J]. International Journal of Adaptive Control & Signal Processing, 2013, 27(11):925-943.
[16] SINGHOSE W. Command shaping for flexible systems:A review of the first 50 years[J]. International Journal of Precision Engineering and Manufacturing, 2009, 10(4):153-168.
[17] YUE B Z, ZHU L M. Hybrid control of liquid filled spacecraft maneuver by dynamic inversion and input shaping[J]. AIAA Journal, 2014, 52(3):618-626.
[18] MAR R, GOYAL A, NGUYEN V, et al. Combined input shaping and feedback control for double-pendulum systems[J]. Mechanical Systems and Signal Processing, 2017, 85(15):267-277.
[19] HU Q L. Input shaping and variable structure control for simultaneous precision positioning and vibration reduction of flexible spacecraft with saturation compensation[J]. Journal of Sound and Vibration, 2008, 318(12):18-35.
[20] 苗双全, 丛炳龙, 刘向东. 基于输入成形的柔性航天器自适应滑模控制[J]. 航空学报, 2013, 34(8):1906-1914. MIAO S Q, CONG B L, LIU X D. Adaptive sliding mode control of flexible spacecraft on input shaping[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(8):1906-1914(in Chinese).
[21] 肖冰, 胡庆雷, 霍星, 等. 执行器故障的柔性航天器姿态滑模容错控制[J]. 航空学报, 2011, 32(10):1869-1878. XIAO B, HU Q L, HUO X, et al. Sliding mode fault tolerant attitude control for flexible spacecraft under actuator fault[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(10):1869-1878(in Chinese).
[22] COSTIC B T, DAWSON D M, QUWIEOZ M S, et al. Quaternion-based adaptive attitude tracking controller without velocity measurements[J]. Journal of Guidance, Control, and Dynamics, 2001, 24(6):1214-1222.
[23] SHEN Q, WANG D W, ZHU S Q, et al. Finite-time fault-tolerant attitude stabilization for spacecraft with actuator saturation[J]. IEEE Transactions on Aerospace and Electronic Systems, 2015, 51(3):2390-2405.
[24] EDWARDS C, SPURGEON S K, PATTON R J. Sliding mode observers for fault detection and isolation[J]. Automatica, 2000, 36(4):541-553.
[25] UTKIN V I. Sliding modes in control optimization[M]. Berlin:Springer-Verlag, 1992.
[26] 程丽丽. 有限时间收敛控制性能指标的分析研究[D]. 曲阜:曲阜师范大学, 2007. CHENG L L. The analysis of performance indicators of finite time convergence control[D]. Qufu:Qufu Normal University, 2007(in Chinese).
[27] WU Y Q, YU X H, MAN Z H. Terminal sliding mode control design for uncertain dynamic systems[J]. Systems & Control Letters, 1998, 34(5):281-287.
[28] TIAN B L, LIU L H, LU H C, et al. Multivariable finite time attitude control for quadrotor UAV:Theory and experimentation[J]. IEEE Transactions on Industrial Electronics, 2018, 65(3):2567-2577.
文章导航

/