[1] 周恒,赵耕夫. 流动稳定性[M]. 北京:国防工业出版社,2004:1-86. ZHOU H, ZHAO G F. Hydrodynamic stability[M].Beijing:National Defense Industry Press, 2004:1-86(in Chinese).
[2] LEE C, CHEN S Y. Recent progress in the study of transition in the hypersonic boundary layer[J]. National Science Review, 2019, 6(1):155-170.
[3] MAYER C, TERZI D, FASEL H. DNS of complete transition to turbulence via oblique breakdown at Mach 3:Part Ⅱ:AIAA-2009-3558[R]. Reston, VA:AIAA, 2009.
[4] DUCROS F, COMTE P, LESIEUR M. Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate[J]. Journal of Fluid Mechanics, 1996, 326:1-36.
[5] MACK L M. Boundary layer linear stability theory:AGARD Report No. 709[R]. Paris:AGARD, 1984.
[6] KOCIAN T S, MOYES A J, MULLEN C D, et al. PSE and spatial biglobal instability analysis of HIFiRE-5 geometry:AIAA-2016-3346[R]. Reston, VA:AIAA, 2016.
[7] BERRY S A, NOWAK R J, HORVATH T J. Boundary layer control for hypersonic airbreathing vehicles:AIAA-2004-2246[R]. Reston, VA:AIAA, 2004.
[8] MENTER F R, LANGTRY R B.A correlation-based transition model using local variables part1-model formulation:GT 2004-53452[R]. New York:ASME, 2004.
[9] LANGTRY R B. A Correlation-based transition model using local variables for unstructured parallelized CFD codes[D]. Stuttgart:University of Stuttgart, 2006:34-57.
[10] LANGTRY R B, MENTER F R. Correlation-based transition modeling for unstructured parallelized computational fluid dynamics codes[J]. AIAA Journal, 2009, 47(12):2894-2906.
[11] WATANABE Y, MISAKA T, OBAYASHI S.Application of crossflow transition criteria to local correlation-based transition model:AIAA-2009-1145[R]. Reston, VA:AIAA, 2009.
[12] SEYFERT C, KRUMBEIN A. Correlation-based transition transport modeling for three-dimensional aerodynamic configurations:AIAA-2012-0448[R]. Reston, VA:AIAA, 2012.
[13] SEYFERT C, KRUMBEIN A. Correlation-based transition transport modeling for three-dimensional aerodynamic configurations[J]. Journal of Aircraft, 2013, 50(5):1533-1539.
[14] LANGTRY R B, SENGUPTA K, YEH D T, et al. Extending the γ-Reθt local correlation based transition model for crossflow effects:AIAA-2015-2474[R]. Reston, VA:AIAA, 2015.
[15] LANGEL C M, CHOW R, DAM C P. A computational approach to simulating the effects of realistic surface roughness on boundary layer transition:AIAA-2014-0234[R]. Reston, VA:AIAA, 2014.
[16] KRAUSE M, BEHR M, BALLMANN J.Modeling of transition effects in hypersonic intake flows using a correlation-based intermittency model:AIAA-2008-2598[R]. Reston, VA:AIAA, 2008.
[17] ZHANG X D, GAO Z H. A numerical research on a compressibility-correlated langtrys transition model for double wedge boundary layer flows[J]. Chinese Journal of Aeronautics, 2011, 24(3):249-257.
[18] CHENG G, NICHOLS R, NEROORKAR K D,et al. Validation and assessment of turbulence transition models:AIAA-2009-1141[R]. Reston, VA:AIAA, 2009.
[19] YI M R, ZHAO H Y, LE J L. Hypersonic natural and forced transition simulation by correlation-based intermittency model:AIAA-2017-2337[R]. Reston, VA:AIAA, 2017.
[20] 易淼荣,赵慧勇,乐嘉陵. 基于γ-Reθ转捩模型的高超声速复杂构型转捩模拟[J]. 实验流体力学, 2018, 32(4):1-11. YI M R, ZHAO H Y, LE J L. Hypersonic boundary layer transition simulation of complex configuration using γ-Reθtransition model[J].Journal of Experiments in Fluid Mechanics, 2018, 32(4):1-11(in Chinese).
[21] CHEN X, ZHU Y, LEE C.Interactions between second mode and low-frequency waves in a hypersonic boundary layer[J]. Journal of Fluid Mechanics, 2017, 820:693-735.
[22] 潘翀, 王晋军. 自由来流扰动引起的旁路转捩研究进展[J]. 力学进展, 2011, 41(6):668-685. PAN C, WANG J J. Progress in bypass transition induced by free-stream disturbance[J]. Advances in Mechanics. 2011, 41(6):668-685(in Chinese).
[23] YOON S, BARNHARDT M, CANDLER G. Simulations of high-speed flow over an isolated roughness:AIAA-2010-1573[R]. Reston, VA:AIAA, 2010.
[24] DUAN Z W, XIAO Z X, FU S. Simulation of transition triggered by isolated roughness in hypersonic boundary layer:AIAA-2012-3076[R]. Reston, VA:AIAA, 2012.
[25] XIAO L H, XIAO Z X, DUAN Z W, et al. Improved-delayed-detached-eddy simulation of cavity-induced transition in hypersonic boundary layer[J]. International Journal of Heat and Fluid Flow, 2015, 51:138-150.
[26] BORG M P. Laminar instability and transition on the X-51A[D]. West Lafayette, IN:Purdue University, 2009:38-68.
[27] SORENSEN N N, BECHMANN A, ZAHLE F. 3D CFD computations of transitional flows using DES and a correlation based transition model[J]. Wind Energy, 2011, 14(1):77-90.
[28] ALAM M F, WALTERS D K, THOMPSON D S. A transition-sensitive hybrid RANS/LES modeling methodology for CFD applications:AIAA-2013-0995[R]. Reston, VA:AIAA, 2013.
[29] WALTERS D K, COKLJAT D. A three-equation eddy-viscosity model for reynolds-averaged navier-stokes simulations of transitional flow[J]. ASME Journal of Fluids Engineering, 2008, 130(12):121401.
[30] 乔磊, 白俊强,华俊. Gamma-Theta经验转捩模型在DES中的应用[J]. 航空工程进展, 2013, 4(2):226-231. QIAO L, BAI J Q, HUA J.Application of Gamma-Theta transition model in DES[J]. Advances in Aeronautical Science and Engineering, 2013, 4(2):226-231(in Chinese).
[31] 赵慧勇.超燃冲压整体发动机并行数值研究[D]. 绵阳:中国空气动力研究与发展中心, 2005:41-97. ZHAO H Y.Massively parallel computation on scramjet combustor[D]. Mianyang:China Aerodynamics Research and Development Center,2005:41-97(in Chinese).
[32] GRITSKEVICH M S, GARBARUK A V, SCHÜTZE J, et al. Development of DDES and IDDES formulations for the k-ω shear stress transport model[J]. Flow Turbulence & Combustion, 2012, 88(3):431-449.
[33] 韩亦宇. 高超声速进气道激波振荡的DES数值模拟研究[D]. 绵阳:中国空气动力研究与发展中心, 2014:2-45. HAN Y Y. Detached Eddy Simulation(DES) of hypersonic inlet shock oscillation[D]. Mianyang:China Aerodynamics Research and Development Center, 2014:2-45(in Chinese).
[34] GOEBEL S G. An experimental investigation of compressible turbulent mixing layers[D]. Urbana-Champaign, IL:University of Illinois, 1990:20-79.
[35] FORSYTHE J R.Investigation of modified Menter's two-equation turbulence models for supersonic applications:AIAA-1999-0873[R]. Reston, VA:AIAA, 1999.
[36] CHEN F J, MALIK M R. Boundary-Layer transition on a cone and flat plate at Mach 3.5[J]. AIAA Journal, 1989, 27(6):687-693.
[37] NEUENHAHN T, OLIVIER H. Influence of the wall temperature and the entropy layer effects on double wedge shock boundary layer interactions:AIAA-2006-8136[R]. Reston, VA:AIAA, 2006.
[38] TIRTEY S C, CHAZOT O, WALPOT L. Characterization of hypersonic roughness-induced boundary-layer transition[J]. Experiments in Fluids, 2011,50(2):407-418.
[39] TIRTEY S C, CHAZOT O.Characterization of hypersonic roughness induced transition for the EXPERT flight experiment:AIAA-2009-7215[R]. Reston, VA:AIAA, 2006.