Phenolic resin-based nanoporous material (PNM) is a new kind of light-weight and efficient thermal protection material that meets the demand of new-generation aerospace craft. Traditionally, its fabrication requires supercritical drying technique which is costly and time-consuming. In this work, PNM is fabricated via a two-step approach including the synthesis of novolac resin and the sol-gel process, making the ambient pressure drying of PNM possible. The effects of curing agent amount, curing temperature, and curing time on the structure were systematically investigated. And the factors affecting shrinkage and thermal stability were also identified. The results show that the change of nanoporous structure of PNM can affect the shrinkage of PNM after drying. Larger particles and larger pores contribute to smaller shrinkage. The thermal stability of PNM is mainly influenced by its chemical composition and molecular structure. Higher thermal stability is expected when the addition of curing agent was optimized. When the curing agent amount is 10%, the curing temperature is elevated to 150℃, and the curing time is extended to 48 h, the obtained PNM has the highest thermal stability (char yield of 54.2% at 900℃), highly developed nanoporous structure (surface area of 264.0 m2/g, pore volume of 2.67 cm3/g and average pore diameter of 40.0 nm), and the smallest shrinkage after drying (0%). This kind of PNM is promising to be used in future aerospace crafts for its easy fabrication and excellent performance.
[1] 沈学霖, 朱光明, 杨鹏飞. 航空航天用隔热材料的研究进展[J]. 高分子材料科学与工程, 2016, 32(10):164-169. SHEN X L, ZHU G M, YANG P F. Advances in heat insulation material applied for aerospace[J]. Polymer Materials Science and Engineering, 2016, 32(10):164-169(in Chinese).
[2] 程功, 肖军. 高超音速飞行器热防护材料技术分析[J]. 航空制造技术, 2015(s2):43, 45-56. CHENG G, XIAO J. Analysis of thermal protection materials for hypersonic aircraft[J]. Aeronautical Manufacturing Technology, 2015(s2):43, 45-56(in Chinese).
[3] 彭治雨, 石义雷, 龚红明, 等. 高超声速气动热预测技术及发展趋势[J]. 航空学报, 2015, 36(1):325-345. PENG Z Y, SHI Y L, GONG H M, et al. Hypersonic aeroheating prediction technique and its trend of development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):325-345(in Chinese).
[4] 张衍, 刘育建, 王井岗. 我国高性能烧蚀防热材料用酚醛树脂研究进展[J]. 宇航材料工艺, 2005, 35(2):1-5. ZHANG Y, LIU Y J, WANG J G. Research on phenolic resin for ablative materials in China[J]. Aerospace Materials and Technology, 2005, 35(2):1-5(in Chinese).
[5] 李想, 程广宜. 玄武岩纤维增强酚醛树脂复合材料烧蚀性能研究[J]. 材料开发与应用, 2009, 24(5):36-39. LI X, CHENG G Y. Ablation performance of basalt fiber reinforced phenolic resin composite[J]. Development and Application of Materials, 2009, 24(5):36-39(in Chinese).
[6] 蒋凌澜, 陈阳. 树脂基复合材料在航天飞行器气动热防护上的应用研究[J]. 玻璃钢/复合材料, 2014(7):78-84. JIANG L L, CHEN Y. The application research of resin-based composites for aero-dynamic thermal protection system[J]. Fiber Reinforced Plastics/Composites, 2014(7):78-84(in Chinese).
[7] 薛华飞, 姚秀荣, 程海明, 等. 热防护用轻质烧蚀材料现状与发展[J]. 哈尔滨理工大学学报, 2017, 22(1):123-128. XUE H F, YAO X R, CHENG H M, et al. Current situation development of lightweight ablation materials for thermal protection[J]. Journal of Harbin University of Science and Technology, 2017, 22(1):123-128(in Chinese).
[8] AKIMOV Y K. Fields of application of aerogels (review)[J]. Instruments & Experimental Techniques, 2003, 46(3):287-299.
[9] DU A, ZHOU B, ZHANG Z, et al. A special material or a new state of matter:A review and reconsideration of the aerogel[J]. Materials, 2013, 6(3):941-968.
[10] NAZERAN N, MOGHADDAS J. Synthesis and characterization of silica aerogel reinforced rigid polyurethane foam for thermal insulation application[J]. Journal of Non-Crystalline Solids, 2017, 461:1-11.
[11] HASAN M A, SANGASHETTY R, ESTHER A C M, et al. Prospect of thermal insulation by silica aerogel:A brief review[J]. Journal of the Institution of Engineers, 2017, 98(2):1-8.
[12] DORCHEH A S, ABBASⅡ M H. Silica aerogel; synthesis, properties and characterization[J]. Journal of Materials Processing Technology, 2008, 199(1):10-26.
[13] ZHONG Y, ZHANG J, WU X, et al. Carbon-fiber felt reinforced carbon/alumina aerogel composite fabricated with high strength and low thermal conductivity[J]. Journal of Sol-Gel Science and Technology, 2017, 84(1):129-134.
[14] MEADOR M A, MALOW E J, SILVA R, et al. Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine[J]. ACS Applied Materials & Interfaces, 2012, 4(2):536-544.
[15] MORENO-CASTILLA C, MALDONADO-HODAR F J. Carbon aerogels for catalysis applications:An overview[J]. Carbon, 2005, 43(3):455-465.
[16] WU D, FU R, SUN Z, et al. Low-density organic and carbon aerogels from the sol-gel polymerization of phenol with formaldehyde[J]. Journal of Non-Crystalline Solids, 2005, 351(10):915-921.
[17] ZUBYK H, MYKHAILIV O, PAPATHANASSIOU A N, et al. A phenol-formaldehyde polymeric network to generate organic aerogels:synthesis, physicochemical characteristics and potential applications[J]. Journal of Materials Chemistry A, 2017, 6(3).
[18] DONG Y I, MI L, ZHOU G, et al. Preparation and characterization of phenol-melamine-formaldehyde aerogels[J]. Journal of Functional Materials, 2017, 48(4):04141-04144.
[19] 王宝和, 于才渊, 王喜忠. 纳米多孔材料的超临界干燥新技术[J]. 化学工程, 2005, 33(2):13-17. WANG B H, YU C Y, WANG X Z. Novel technology of supercritical drying for nano-porous materials[J]. Chemical Engineering, 2005, 33(2):13-17(in Chinese).
[20] 陈龙武, 张宇星, 甘礼华, 等. 气凝胶的非超临界干燥制备技术[J]. 实验室研究与探索, 2001, 20(6):54-57. CHEN L W, ZHANG Y X, GAN L H, et al. Preparation of aerogels by non-supercritical drying technique[J]. Laboratory Research, 2001, 20(6):54-57(in Chinese).
[21] ZHAO H, CHEN L X, YUN J, et al. Improved thermal stabilities, ablation and mechanical properties for carbon fibers/phenolic resins laminated composites modified by silicon-containing polyborazine[J]. Engineered Science, 2018, 2:57-66.
[22] FENG J J, LI J, CHEN L X, et al. Enhanced thermal stabilities and char yields of carbon fibers reinforced boron containing novolac phenolic resins composites[J]. Journal of Polymer Research, 2017, 24:176.