材料工程与机械制造

酚醛树脂基纳米多孔材料的制备及结构调控

  • 刘圆圆 ,
  • 郭慧 ,
  • 刘韬 ,
  • 徐春晓 ,
  • 宋寒 ,
  • 李文静 ,
  • 杨洁颖 ,
  • 赵英民
展开
  • 航天特种材料及工艺技术研究所, 北京 100074

收稿日期: 2018-09-05

  修回日期: 2018-10-08

  网络出版日期: 2019-05-08

Preparation and structure control of phenolic resin-based nanoporous materials

  • LIU Yuanyuan ,
  • GUO Hui ,
  • LIU Tao ,
  • XU Chunxiao ,
  • SONG Han ,
  • LI Wenjing ,
  • YANG Jieying ,
  • ZHAO Yingmin
Expand
  • Aerospace Research Institute of Special Material and Processing Technology, Beijing 100074, China

Received date: 2018-09-05

  Revised date: 2018-10-08

  Online published: 2019-05-08

摘要

酚醛树脂基纳米多孔材料(Phenolic Resin-based Nanoporous Materials,PNM)是满足新一代航天飞行器轻质、高效隔热需求的新型热防护材料,传统制备方法中需使用超临界干燥技术,制备周期长、成本高。本研究通过两步法,即先合成线性酚醛树脂,再进行溶胶-凝胶的方法,实现了常压干燥PNM的制备。系统研究了固化剂含量、固化温度和固化时间对材料结构的影响和调控作用,分析了影响材料收缩率和热稳定性的因素。结果表明,PNM的微观纳米结构的变化会影响材料干燥后的收缩率,制备大颗粒、大孔径的微观结构更有利于降低材料的收缩率。而PNM的热稳定性主要受交联反应过程形成的化学结构的影响,通过优化固化剂的含量可提高PNM的热稳定性。当固化剂含量为10%,固化温度提高至150℃,固化时间延长至48 h的条件下,获得的PNM有最高的热稳定性(900℃下的残碳率为54.2%)、最发达的孔结构(比表面积为264.0 m2/g、孔容为2.67 cm3/g、平均孔径为40.0 nm)和最小的收缩率(0%)。此PNM制备方法简单、性能优异,在未来航天飞行器上有广阔的应用前景。

本文引用格式

刘圆圆 , 郭慧 , 刘韬 , 徐春晓 , 宋寒 , 李文静 , 杨洁颖 , 赵英民 . 酚醛树脂基纳米多孔材料的制备及结构调控[J]. 航空学报, 2019 , 40(5) : 422654 -422654 . DOI: 10.7527/S1000-6893.2018.22654

Abstract

Phenolic resin-based nanoporous material (PNM) is a new kind of light-weight and efficient thermal protection material that meets the demand of new-generation aerospace craft. Traditionally, its fabrication requires supercritical drying technique which is costly and time-consuming. In this work, PNM is fabricated via a two-step approach including the synthesis of novolac resin and the sol-gel process, making the ambient pressure drying of PNM possible. The effects of curing agent amount, curing temperature, and curing time on the structure were systematically investigated. And the factors affecting shrinkage and thermal stability were also identified. The results show that the change of nanoporous structure of PNM can affect the shrinkage of PNM after drying. Larger particles and larger pores contribute to smaller shrinkage. The thermal stability of PNM is mainly influenced by its chemical composition and molecular structure. Higher thermal stability is expected when the addition of curing agent was optimized. When the curing agent amount is 10%, the curing temperature is elevated to 150℃, and the curing time is extended to 48 h, the obtained PNM has the highest thermal stability (char yield of 54.2% at 900℃), highly developed nanoporous structure (surface area of 264.0 m2/g, pore volume of 2.67 cm3/g and average pore diameter of 40.0 nm), and the smallest shrinkage after drying (0%). This kind of PNM is promising to be used in future aerospace crafts for its easy fabrication and excellent performance.

参考文献

[1] 沈学霖, 朱光明, 杨鹏飞. 航空航天用隔热材料的研究进展[J]. 高分子材料科学与工程, 2016, 32(10):164-169. SHEN X L, ZHU G M, YANG P F. Advances in heat insulation material applied for aerospace[J]. Polymer Materials Science and Engineering, 2016, 32(10):164-169(in Chinese).
[2] 程功, 肖军. 高超音速飞行器热防护材料技术分析[J]. 航空制造技术, 2015(s2):43, 45-56. CHENG G, XIAO J. Analysis of thermal protection materials for hypersonic aircraft[J]. Aeronautical Manufacturing Technology, 2015(s2):43, 45-56(in Chinese).
[3] 彭治雨, 石义雷, 龚红明, 等. 高超声速气动热预测技术及发展趋势[J]. 航空学报, 2015, 36(1):325-345. PENG Z Y, SHI Y L, GONG H M, et al. Hypersonic aeroheating prediction technique and its trend of development[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):325-345(in Chinese).
[4] 张衍, 刘育建, 王井岗. 我国高性能烧蚀防热材料用酚醛树脂研究进展[J]. 宇航材料工艺, 2005, 35(2):1-5. ZHANG Y, LIU Y J, WANG J G. Research on phenolic resin for ablative materials in China[J]. Aerospace Materials and Technology, 2005, 35(2):1-5(in Chinese).
[5] 李想, 程广宜. 玄武岩纤维增强酚醛树脂复合材料烧蚀性能研究[J]. 材料开发与应用, 2009, 24(5):36-39. LI X, CHENG G Y. Ablation performance of basalt fiber reinforced phenolic resin composite[J]. Development and Application of Materials, 2009, 24(5):36-39(in Chinese).
[6] 蒋凌澜, 陈阳. 树脂基复合材料在航天飞行器气动热防护上的应用研究[J]. 玻璃钢/复合材料, 2014(7):78-84. JIANG L L, CHEN Y. The application research of resin-based composites for aero-dynamic thermal protection system[J]. Fiber Reinforced Plastics/Composites, 2014(7):78-84(in Chinese).
[7] 薛华飞, 姚秀荣, 程海明, 等. 热防护用轻质烧蚀材料现状与发展[J]. 哈尔滨理工大学学报, 2017, 22(1):123-128. XUE H F, YAO X R, CHENG H M, et al. Current situation development of lightweight ablation materials for thermal protection[J]. Journal of Harbin University of Science and Technology, 2017, 22(1):123-128(in Chinese).
[8] AKIMOV Y K. Fields of application of aerogels (review)[J]. Instruments & Experimental Techniques, 2003, 46(3):287-299.
[9] DU A, ZHOU B, ZHANG Z, et al. A special material or a new state of matter:A review and reconsideration of the aerogel[J]. Materials, 2013, 6(3):941-968.
[10] NAZERAN N, MOGHADDAS J. Synthesis and characterization of silica aerogel reinforced rigid polyurethane foam for thermal insulation application[J]. Journal of Non-Crystalline Solids, 2017, 461:1-11.
[11] HASAN M A, SANGASHETTY R, ESTHER A C M, et al. Prospect of thermal insulation by silica aerogel:A brief review[J]. Journal of the Institution of Engineers, 2017, 98(2):1-8.
[12] DORCHEH A S, ABBASⅡ M H. Silica aerogel; synthesis, properties and characterization[J]. Journal of Materials Processing Technology, 2008, 199(1):10-26.
[13] ZHONG Y, ZHANG J, WU X, et al. Carbon-fiber felt reinforced carbon/alumina aerogel composite fabricated with high strength and low thermal conductivity[J]. Journal of Sol-Gel Science and Technology, 2017, 84(1):129-134.
[14] MEADOR M A, MALOW E J, SILVA R, et al. Mechanically strong, flexible polyimide aerogels cross-linked with aromatic triamine[J]. ACS Applied Materials & Interfaces, 2012, 4(2):536-544.
[15] MORENO-CASTILLA C, MALDONADO-HODAR F J. Carbon aerogels for catalysis applications:An overview[J]. Carbon, 2005, 43(3):455-465.
[16] WU D, FU R, SUN Z, et al. Low-density organic and carbon aerogels from the sol-gel polymerization of phenol with formaldehyde[J]. Journal of Non-Crystalline Solids, 2005, 351(10):915-921.
[17] ZUBYK H, MYKHAILIV O, PAPATHANASSIOU A N, et al. A phenol-formaldehyde polymeric network to generate organic aerogels:synthesis, physicochemical characteristics and potential applications[J]. Journal of Materials Chemistry A, 2017, 6(3).
[18] DONG Y I, MI L, ZHOU G, et al. Preparation and characterization of phenol-melamine-formaldehyde aerogels[J]. Journal of Functional Materials, 2017, 48(4):04141-04144.
[19] 王宝和, 于才渊, 王喜忠. 纳米多孔材料的超临界干燥新技术[J]. 化学工程, 2005, 33(2):13-17. WANG B H, YU C Y, WANG X Z. Novel technology of supercritical drying for nano-porous materials[J]. Chemical Engineering, 2005, 33(2):13-17(in Chinese).
[20] 陈龙武, 张宇星, 甘礼华, 等. 气凝胶的非超临界干燥制备技术[J]. 实验室研究与探索, 2001, 20(6):54-57. CHEN L W, ZHANG Y X, GAN L H, et al. Preparation of aerogels by non-supercritical drying technique[J]. Laboratory Research, 2001, 20(6):54-57(in Chinese).
[21] ZHAO H, CHEN L X, YUN J, et al. Improved thermal stabilities, ablation and mechanical properties for carbon fibers/phenolic resins laminated composites modified by silicon-containing polyborazine[J]. Engineered Science, 2018, 2:57-66.
[22] FENG J J, LI J, CHEN L X, et al. Enhanced thermal stabilities and char yields of carbon fibers reinforced boron containing novolac phenolic resins composites[J]. Journal of Polymer Research, 2017, 24:176.
文章导航

/