材料工程与机械制造

飞机蒙皮镜像铣加工稳定性分析

  • 王昌瑞 ,
  • 康仁科 ,
  • 鲍岩 ,
  • 朱祥龙 ,
  • 董志刚 ,
  • 郭东明
展开
  • 1. 大连理工大学 精密与特种加工教育部重点实验室, 大连 116024;
    2. 昌河飞机工业(集团)有限责任公司, 景德镇 333000

收稿日期: 2018-03-01

  修回日期: 2018-03-19

  网络出版日期: 2018-11-27

基金资助

国家商用飞机制造工程技术研究中心创新基金(201500308);国家高技术研究发展计划(2015AA043402)

Stability analysis of aircraft skin mirror milling process

  • WANG Changrui ,
  • KANG Renke ,
  • BAO Yan ,
  • ZHU Xianglong ,
  • DONG Zhigang ,
  • GUO Dongming
Expand
  • 1. Key Laboratory for Precision and Non-traditional Machining Technology of Ministry of Education, Dalian University of Technology, Dalian 116024, China;
    2. Changhe Aircraft Industries(Group) Co., Ltd., Jingdezhen 333000, China

Received date: 2018-03-01

  Revised date: 2018-03-19

  Online published: 2018-11-27

Supported by

National Engineering and Research Center for Commercial Aircraft Manufacturing (201500308); National High-tech Research and Development Program of China (2015AA043402)

摘要

镜像铣技术是近年来提出的一种针对大尺寸薄壁件的加工方法,其加工环保、高效,具有逐步取代传统化铣加工的趋势。针对飞机蒙皮镜像铣加工过程中的颤振问题,首先,根据镜像铣加工特点,建立工艺系统颤振稳定性极限的预测模型;其次,通过有限元方法对蒙皮工件进行模态分析,分析蒙皮不同加工位置动力学特性变化导致的铣削稳定性变化,并通过实验测量获取工件动力学参数,对不同加工位置的稳定性做出预测;最后,开展加工实验,基于非接触测量方法,在线监测镜像铣加工区域的振动位移,通过时、频域信号对加工状态进行辨识,揭示了镜像铣加工过程的稳定性变化及失稳机制,验证了所提方法的准确性,在工程领域具有较高的实用价值。

本文引用格式

王昌瑞 , 康仁科 , 鲍岩 , 朱祥龙 , 董志刚 , 郭东明 . 飞机蒙皮镜像铣加工稳定性分析[J]. 航空学报, 2018 , 39(11) : 422109 -422121 . DOI: 10.7527/S1000-6893.2018.22109

Abstract

In recent years, the mirror milling technology has been developed for processing large-sized thin floor parts, which is environmentally friendly and efficient, and is growing to replace the traditional chemical milling process. To overcome the problem of chatter in aircraft mirror milling, a method is proposed to prevent the occurrence of chatter by optimizing the cutting parameters. According to the characteristics of mirror milling process, a prediction model is established for predicting stability limit of mirror milling. A modal analysis of skin parts is performed by using the finite element method to analyze the changes of milling stability caused by the changes of the dynamic characteristics of different processing positions of the skin. The dynamic parameters of the workpiece are obtained through experimental measurements, and the chatter stability of different processing positions is obtained. Experiments are carried out using non-contact measurement method to monitor the vibration displacement in processing area on-line. The processing status is identified with time-frequency domain synthesis analysis. The results reveal the stability changes during mirror milling process and the instability mechanism. Effectiveness of the method proposed is validated to be effective, showing great applicability in practice.

参考文献

[1] 鲁达. 新一代飞机蒙皮绿色加工技术[J]. 航空制造技术, 2010(16): 102-103. LU D. New generation green machining technology for aircraft skin[J]. Aeronautical Manufacturing Technology, 2010(16): 102-103 (in Chinese).
[2] 张志国, 徐学民. MMS: 新型绿色蒙皮加工系统[J]. 航空制造技术, 2010(19): 84-86. ZHANG Z G, XU X M. MMS: The latest green skin machining system[J]. Aeronautical Manufacturing Technology, 2010(19): 84-86 (in Chinese).
[3] 张彤. 飞机蒙皮厚度精确加工的最新技术——以数铣替代化铣的绿色加工工艺[J]. 教练机, 2011(4): 25-29. ZHANG T. Up-to-date technology for precision machining of aircraft skin thickness-greenhouse machining technology for the CNC milling instead of chemical milling[J]. Trainer, 2011(4): 25-29 (in Chinese).
[4] 马文博, 余康, 罗泰. 机身蒙皮设计与镜像铣加工方法[J]. 中国科技信息, 2016(13): 91-93. MA W B, YU K, LUO T. Fuselage skin design and mirror milling technology[J]. China Science and Technology Information, 2016(13): 91-93 (in Chinese).
[5] 鲍岩, 董志刚, 朱祥龙, 等. 蒙皮镜像铣削支撑技术的研究现状和发展趋势[J]. 航空学报, 2018, 39(4): 421817. BAO Y, DONG Z G, ZHU X L, et al. Review on support technology of mirror milling for aircraft skin[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4): 421817 (in Chinese).
[6] BAO Y, DONG Z G, KANG R K, et al. Milling force and machining deformation in mirror milling of aircraft skin[J]. Advanced Materials Research, 2016, 1136: 149-155.
[7] LI Z, BAO Y, KANG R K, et al. An advanced support method of aircraft skin mirror milling - fluid lubricating support[J]. Materials Science Forum, 2016, 874: 469-474.
[8] BAO Y, ZHU X L, KANG R, et al. Optimization of support location in mirror-milling of aircraft skins[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2016, DOI: 10.1177/0954405416673110.
[9] BAO Y, KANG R, DONG Z G, et al. Model for surface topography prediction in mirror - milling of aircraft skin parts[J]. International Journal of Advanced Manufacturing Technology, 2018, 95(5): 2259-2268.
[10] BAO Y, KANG R K, DONG Z G, et al. Multi-point support technology for mirror-milling of aircraft skins[J]. Materials and Manufacturing Processes, 2017, DOI: 10.1080/10426914.2017.1388519.
[11] 万敏, 马颖超, 张卫红. 铣削加工工艺力学机理研究[J]. 航空制造技术, 2016(7): 44-49. WAN M, MA Y C, ZHANG W H. On the mechanics mechanism of milling process[J]. Aeronautical Manufacturing Technology, 2016(7): 44-49 (in Chinese).
[12] 向兵飞, 徐明, 郑和兴, 等. 一种空间蒙皮防震颤支撑装置:中国, ZL201520155925[P]. 2015-07-29. XIANG B F, XU M, ZHENG H X, et al. Anti-chatter support device for mirror milling of panels: China, ZL201520155925[P]. 2015-07-29 (in Chinese).
[13] 祝小军, 向兵飞, 汪洋华, 等. 飞机蒙皮镜像铣切原理与算法分析[J]. 教练机, 2015(2): 23-27. ZHU X J, XIANG B F, WANG Y H, et al. Application and research of mirror milling technology for aircraft skin[J]. Trainer, 2015(2): 23-27 (in Chinese).
[14] 向兵飞, 黄晶, 许家明, 等. 蒙皮铣削镜像顶撑技术研究[J]. 制造技术与机床, 2015(4): 92-96. XIANG B F, HUANG J, XUN J M, et al. Mirror top bracing technology in milling aircraft skin[J]. Manufacturing Technology and Machine Tool, 2015(4): 92-96 (in Chinese).
[15] 徐明, 向兵飞, 李响, 等. 蒙皮镜像铣切系统及先进制造工艺的应用[J]. 制造技术与机床, 2014(11): 40-43. XU M, XIANG B F, LI X, et al. Application of mirror milling system and advanced machining technology for aircraft skin[J]. Manufacturing Technology and Machine Tool, 2014(11): 40-43 (in Chinese).
[16] 李迎光, 郝小忠, 马斯博, 等. 飞机蒙皮镜像铣削顶撑方法及装备: 中国, ZL201410638069[P]. 2016-09-07. LI Y G, HAO X Z, MA S B, et al. Process and a device for the support of mirror milling of aircraft skin: China, ZL201410638069[P]. 2016-09-07 (in Chinese).
[17] MAHMUD A. Design of a grasping and machining end effector for thin aluminum panel[D]. Montreal: Université de Montréal, 2015: 39-84.
[18] ALTINTAS Y, BUDAK E. Analytical prediction of stability lobes in milling[J]. CIRP Annals-Manufacturing Technology, 1995, 44(1): 357-362.
[19] JENSEN S A, SHIN Y C. Stability analysis in face milling operations, part 1: Theory of stability lobe prediction[J]. Journal of Manufacturing Science and Engineering, 1999, 121(4): 600-605.
[20] ALTINTAS Y. Analytical prediction of three dimensional chatter stability in milling[J]. JSME International Journal, 2002, 44(3): 717-723.
[21] BRAVO U, ALTUZARRA O, LACALLE L, et al. Stability limits of milling considering the flexibility of the workpiece and the machine[J]. International Journal of Machine Tools and Manufacture, 2005, 45(15): 1669-1680.
[22] CAMPA F J, LACALLE L, CELAYA A. Chatter avoidance in the milling of thin floors with bull-nose end mills: Model and stability diagrams[J]. International Journal of Machine Tools and Manufacture, 2011, 51(1): 43-53.
[23] YANG Y Q, LIU Q, ZHANG B. Three-dimensional chatter stability prediction of milling based on the linear and exponential cutting force model[J]. International Journal of Advanced Manufacturing Technology, 2014, 72(9-12): 1175-1185.
[24] BUDAK E. Analytical models for high performance milling. Part Ⅱ: Process dynamics and stability[J]. International Journal of Machine Tools & Manufacture, 2006, 46(12-13): 1489-1499.
[25] MUNOA J, BEUDAERT X, DOMBOVARI Z, et al. Chatter suppression techniques in metal cutting[J]. CIRP Annals-Manufacturing Technology, 2016, 65(2): 785-808.
[26] INSPERGER T, STEPAN G. Updated semi-discretization method for periodic delay-differential equations with discrete delay[J]. International Journal for Numerical Methods in Engineering, 2004, 61(1): 117-141.
[27] DING Y, ZHU L M, ZHANG X J, et al. A full-discretization method for prediction of milling stability[J]. International Journal of Machine Tools and Manufacture, 2010, 50(5): 502-509.
[28] UKAR E, CAMPA F J, SÁNCHEZ J A, et al. The milling of airframe components with low rigidity: A general approach to avoid static and dynamic problems[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2005, 219(11): 789-802.
[29] YANG Y, ZHANG W H, MA Y C, et al. Chatter prediction for the peripheral milling of thin-walled workpieces with curved surfaces[J]. International Journal of Machine Tools and Manufacture, 2016, 109: 36-48.
[30] THEVENOT V, ARNAUD L, DESSEIN G, et al. Integration of dynamic behaviour variations in the stability lobes method: 3D lobes construction and application to thin-walled structure milling[J]. International Journal of Advanced Manufacturing Technology, 2006, 27(7-8): 638-644.
[31] 蒋宇平, 龙新华, 孟光. 薄壁结构件铣削加工振动稳定性分析[J]. 振动与冲击, 2016(2): 45-50. JIANG Y P, LONG X H, MENG G. Stability analysis for thin-walled milling processes[J]. Journal of vibration and shock, 2016(2): 45-50 (in Chinese).
[32] QU S, ZHAO J B, WANG T R. Three-dimensional stability prediction and chatter analysis in milling of thin-walled plate[J]. International Journal of Advanced Manufacturing Technology, 2016, 86(5-8): 2291-2300.
[33] FEI J X, LIN B, YAN S, et al. Chatter prediction for milling of flexible pocket-structure[J]. International Journal of Advanced Manufacturing Technology, 2017, 89(9-12): 2721-2730.
[34] KO J H, SHAW K C. Chatter prediction based on frequency domain solution in CNC pocket milling[J]. International Journal of Precision Engineering and Manufacturing, 2009, 10(4): 19-25.
[35] FEI J, LIN B, YAN S, et al. Chatter mitigation using moving damper[J]. Journal of Sound and Vibration, 2017, 410: 49-63.
[36] OLVERA D, ELÍAS-ZUNIGA A, PINEDA M, et al. Identification of stability cutting parameters using laser doppler vibrometry[M]//Topics in Modal Analysis. New York: Springer New York, 2014: 553-560.
[37] OLVERA D, ELÍAS-ZUNGA A, MARTíNEZ-ROMERO O, et al. Improved predictions of the stability lobes for milling cutting operations of thin-wall components by considering ultra-miniature accelerometer mass effects[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(5): 2139-2146.
[38] FAASSEN R P H, VAN DE WOUW N, OOSTERLING J A J, et al. Prediction of regenerative chatter by modelling and analysis of high-speed milling[J]. International Journal of Machine Tools and Manufacture, 2003, 43(14): 1437-1446.
[39] 王宇晗, 毕庆贞, 李宇昊. 具有变形跟踪和壁厚测量功能的镜像铣顶压装置: 中国, ZL201410680590[P]. 2017-02-22. WANG Y H, BI Q Z, LI Y H. Mirror milling jacking device with deformation tracking function and wall thickness measuring function: China, ZL201410680590[P]. 2017-02-22 (in Chinese).
[40] ALTINTAS Y. Manufacturing automation: Metal cutting mechanics, machine tool vibrations, and CNC design[M]. Cambridge: Cambridge University Press, 2012: 35-160.
文章导航

/