[1] 鲁达. 新一代飞机蒙皮绿色加工技术[J]. 航空制造技术, 2010(16): 102-103. LU D. New generation green machining technology for aircraft skin[J]. Aeronautical Manufacturing Technology, 2010(16): 102-103 (in Chinese).
[2] 张志国, 徐学民. MMS: 新型绿色蒙皮加工系统[J]. 航空制造技术, 2010(19): 84-86. ZHANG Z G, XU X M. MMS: The latest green skin machining system[J]. Aeronautical Manufacturing Technology, 2010(19): 84-86 (in Chinese).
[3] 张彤. 飞机蒙皮厚度精确加工的最新技术——以数铣替代化铣的绿色加工工艺[J]. 教练机, 2011(4): 25-29. ZHANG T. Up-to-date technology for precision machining of aircraft skin thickness-greenhouse machining technology for the CNC milling instead of chemical milling[J]. Trainer, 2011(4): 25-29 (in Chinese).
[4] 马文博, 余康, 罗泰. 机身蒙皮设计与镜像铣加工方法[J]. 中国科技信息, 2016(13): 91-93. MA W B, YU K, LUO T. Fuselage skin design and mirror milling technology[J]. China Science and Technology Information, 2016(13): 91-93 (in Chinese).
[5] 鲍岩, 董志刚, 朱祥龙, 等. 蒙皮镜像铣削支撑技术的研究现状和发展趋势[J]. 航空学报, 2018, 39(4): 421817. BAO Y, DONG Z G, ZHU X L, et al. Review on support technology of mirror milling for aircraft skin[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4): 421817 (in Chinese).
[6] BAO Y, DONG Z G, KANG R K, et al. Milling force and machining deformation in mirror milling of aircraft skin[J]. Advanced Materials Research, 2016, 1136: 149-155.
[7] LI Z, BAO Y, KANG R K, et al. An advanced support method of aircraft skin mirror milling - fluid lubricating support[J]. Materials Science Forum, 2016, 874: 469-474.
[8] BAO Y, ZHU X L, KANG R, et al. Optimization of support location in mirror-milling of aircraft skins[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2016, DOI: 10.1177/0954405416673110.
[9] BAO Y, KANG R, DONG Z G, et al. Model for surface topography prediction in mirror - milling of aircraft skin parts[J]. International Journal of Advanced Manufacturing Technology, 2018, 95(5): 2259-2268.
[10] BAO Y, KANG R K, DONG Z G, et al. Multi-point support technology for mirror-milling of aircraft skins[J]. Materials and Manufacturing Processes, 2017, DOI: 10.1080/10426914.2017.1388519.
[11] 万敏, 马颖超, 张卫红. 铣削加工工艺力学机理研究[J]. 航空制造技术, 2016(7): 44-49. WAN M, MA Y C, ZHANG W H. On the mechanics mechanism of milling process[J]. Aeronautical Manufacturing Technology, 2016(7): 44-49 (in Chinese).
[12] 向兵飞, 徐明, 郑和兴, 等. 一种空间蒙皮防震颤支撑装置:中国, ZL201520155925[P]. 2015-07-29. XIANG B F, XU M, ZHENG H X, et al. Anti-chatter support device for mirror milling of panels: China, ZL201520155925[P]. 2015-07-29 (in Chinese).
[13] 祝小军, 向兵飞, 汪洋华, 等. 飞机蒙皮镜像铣切原理与算法分析[J]. 教练机, 2015(2): 23-27. ZHU X J, XIANG B F, WANG Y H, et al. Application and research of mirror milling technology for aircraft skin[J]. Trainer, 2015(2): 23-27 (in Chinese).
[14] 向兵飞, 黄晶, 许家明, 等. 蒙皮铣削镜像顶撑技术研究[J]. 制造技术与机床, 2015(4): 92-96. XIANG B F, HUANG J, XUN J M, et al. Mirror top bracing technology in milling aircraft skin[J]. Manufacturing Technology and Machine Tool, 2015(4): 92-96 (in Chinese).
[15] 徐明, 向兵飞, 李响, 等. 蒙皮镜像铣切系统及先进制造工艺的应用[J]. 制造技术与机床, 2014(11): 40-43. XU M, XIANG B F, LI X, et al. Application of mirror milling system and advanced machining technology for aircraft skin[J]. Manufacturing Technology and Machine Tool, 2014(11): 40-43 (in Chinese).
[16] 李迎光, 郝小忠, 马斯博, 等. 飞机蒙皮镜像铣削顶撑方法及装备: 中国, ZL201410638069[P]. 2016-09-07. LI Y G, HAO X Z, MA S B, et al. Process and a device for the support of mirror milling of aircraft skin: China, ZL201410638069[P]. 2016-09-07 (in Chinese).
[17] MAHMUD A. Design of a grasping and machining end effector for thin aluminum panel[D]. Montreal: Université de Montréal, 2015: 39-84.
[18] ALTINTAS Y, BUDAK E. Analytical prediction of stability lobes in milling[J]. CIRP Annals-Manufacturing Technology, 1995, 44(1): 357-362.
[19] JENSEN S A, SHIN Y C. Stability analysis in face milling operations, part 1: Theory of stability lobe prediction[J]. Journal of Manufacturing Science and Engineering, 1999, 121(4): 600-605.
[20] ALTINTAS Y. Analytical prediction of three dimensional chatter stability in milling[J]. JSME International Journal, 2002, 44(3): 717-723.
[21] BRAVO U, ALTUZARRA O, LACALLE L, et al. Stability limits of milling considering the flexibility of the workpiece and the machine[J]. International Journal of Machine Tools and Manufacture, 2005, 45(15): 1669-1680.
[22] CAMPA F J, LACALLE L, CELAYA A. Chatter avoidance in the milling of thin floors with bull-nose end mills: Model and stability diagrams[J]. International Journal of Machine Tools and Manufacture, 2011, 51(1): 43-53.
[23] YANG Y Q, LIU Q, ZHANG B. Three-dimensional chatter stability prediction of milling based on the linear and exponential cutting force model[J]. International Journal of Advanced Manufacturing Technology, 2014, 72(9-12): 1175-1185.
[24] BUDAK E. Analytical models for high performance milling. Part Ⅱ: Process dynamics and stability[J]. International Journal of Machine Tools & Manufacture, 2006, 46(12-13): 1489-1499.
[25] MUNOA J, BEUDAERT X, DOMBOVARI Z, et al. Chatter suppression techniques in metal cutting[J]. CIRP Annals-Manufacturing Technology, 2016, 65(2): 785-808.
[26] INSPERGER T, STEPAN G. Updated semi-discretization method for periodic delay-differential equations with discrete delay[J]. International Journal for Numerical Methods in Engineering, 2004, 61(1): 117-141.
[27] DING Y, ZHU L M, ZHANG X J, et al. A full-discretization method for prediction of milling stability[J]. International Journal of Machine Tools and Manufacture, 2010, 50(5): 502-509.
[28] UKAR E, CAMPA F J, SÁNCHEZ J A, et al. The milling of airframe components with low rigidity: A general approach to avoid static and dynamic problems[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2005, 219(11): 789-802.
[29] YANG Y, ZHANG W H, MA Y C, et al. Chatter prediction for the peripheral milling of thin-walled workpieces with curved surfaces[J]. International Journal of Machine Tools and Manufacture, 2016, 109: 36-48.
[30] THEVENOT V, ARNAUD L, DESSEIN G, et al. Integration of dynamic behaviour variations in the stability lobes method: 3D lobes construction and application to thin-walled structure milling[J]. International Journal of Advanced Manufacturing Technology, 2006, 27(7-8): 638-644.
[31] 蒋宇平, 龙新华, 孟光. 薄壁结构件铣削加工振动稳定性分析[J]. 振动与冲击, 2016(2): 45-50. JIANG Y P, LONG X H, MENG G. Stability analysis for thin-walled milling processes[J]. Journal of vibration and shock, 2016(2): 45-50 (in Chinese).
[32] QU S, ZHAO J B, WANG T R. Three-dimensional stability prediction and chatter analysis in milling of thin-walled plate[J]. International Journal of Advanced Manufacturing Technology, 2016, 86(5-8): 2291-2300.
[33] FEI J X, LIN B, YAN S, et al. Chatter prediction for milling of flexible pocket-structure[J]. International Journal of Advanced Manufacturing Technology, 2017, 89(9-12): 2721-2730.
[34] KO J H, SHAW K C. Chatter prediction based on frequency domain solution in CNC pocket milling[J]. International Journal of Precision Engineering and Manufacturing, 2009, 10(4): 19-25.
[35] FEI J, LIN B, YAN S, et al. Chatter mitigation using moving damper[J]. Journal of Sound and Vibration, 2017, 410: 49-63.
[36] OLVERA D, ELÍAS-ZUNIGA A, PINEDA M, et al. Identification of stability cutting parameters using laser doppler vibrometry[M]//Topics in Modal Analysis. New York: Springer New York, 2014: 553-560.
[37] OLVERA D, ELÍAS-ZUNGA A, MARTíNEZ-ROMERO O, et al. Improved predictions of the stability lobes for milling cutting operations of thin-wall components by considering ultra-miniature accelerometer mass effects[J]. The International Journal of Advanced Manufacturing Technology, 2016, 86(5): 2139-2146.
[38] FAASSEN R P H, VAN DE WOUW N, OOSTERLING J A J, et al. Prediction of regenerative chatter by modelling and analysis of high-speed milling[J]. International Journal of Machine Tools and Manufacture, 2003, 43(14): 1437-1446.
[39] 王宇晗, 毕庆贞, 李宇昊. 具有变形跟踪和壁厚测量功能的镜像铣顶压装置: 中国, ZL201410680590[P]. 2017-02-22. WANG Y H, BI Q Z, LI Y H. Mirror milling jacking device with deformation tracking function and wall thickness measuring function: China, ZL201410680590[P]. 2017-02-22 (in Chinese).
[40] ALTINTAS Y. Manufacturing automation: Metal cutting mechanics, machine tool vibrations, and CNC design[M]. Cambridge: Cambridge University Press, 2012: 35-160.