电子电气工程与控制

基于高斯混合模型的航迹抗差关联算法

  • 李保珠 ,
  • 董云龙 ,
  • 丁昊 ,
  • 关键
展开
  • 海军航空大学 信息融合研究所, 烟台 264001

收稿日期: 2018-09-05

  修回日期: 2018-10-15

  网络出版日期: 2019-04-29

基金资助

国家自然科学基金(61871392,61531020,61871391,61471382,U1633122);航空科学基金(20150184003,20162084005,20162084006)

Anti-bias track association algorithm based on Gaussian mixture model

  • LI Baozhu ,
  • DONG Yunlong ,
  • DING Hao ,
  • GUAN Jian
Expand
  • Institute of Information Fusion, Naval Aviation University, Yantai 264001, China

Received date: 2018-09-05

  Revised date: 2018-10-15

  Online published: 2019-04-29

Supported by

National Natural Science Foundation of China (61871392, 61531020, 61871391, 61471382, U1633122); Aeronautical Science Foundation of China (20150184003,20162084005,20162084006)

摘要

针对雷达系统误差时变、上报目标不完全一致等复杂场景下目标航迹关联问题,采用高斯混合模型(GMM)与航迹间拓扑信息相结合的方法实现航迹抗差关联。将航迹关联问题转化为图像匹配中的非刚性点集匹配问题,建立对非同源航迹具有鲁棒性的高斯混合模型,根据航迹间的邻域拓扑信息决定高斯混合模型中各高斯组成部分的权重,利用期望最大值(EM)算法求解高斯混合模型的最优闭合解,在期望步(E-step)阶段求解航迹的对应关系,在最大化步(M-step)阶段求解非同源航迹比例,最后进行航迹关联判决以获得关联结果。仿真结果表明,该算法在不同系统误差、目标分布密度、探测概率等环境下具有较好有效性和鲁棒性。

本文引用格式

李保珠 , 董云龙 , 丁昊 , 关键 . 基于高斯混合模型的航迹抗差关联算法[J]. 航空学报, 2019 , 40(6) : 322650 -322650 . DOI: 10.7527/S1000-6893.2018.22650

Abstract

To address the track-to-track association problem in the presence of time-varied sensor biases and different targets reported by different sensors, Gaussian Mixture Model (GMM) and neighborhood topology information are used in this paper. The robust track-to-track association problem is turned into a non-rigid point matching problem. The Gaussian mixture model is established with better robustness to ‘unpaired’ tracks. The weight of each Gaussian component is decided by the neighborhood topology information between tracks. The optimal closed solution of the Gaussian mixture model is solved by Expectation Maximization (EM) algorithm. In Expectation-step of the EM algorithm the correspondence of tracks is solved, and in Maximization-step the ‘unpaired’ tracks ratio are calculated. Finally, the track-to-track association is obtained by judgment. Monte carlo simulation demonstrates the effectiveness of the proposed approaches under different sensor biases, targets densities and detection probabilities.

参考文献

[1] BAR-SHALOM Y, FORTMANN T E. Tracking and data association[M]. Orlando:Academic Press INC., 1988:1-20.
[2] 何友, 王国宏, 关欣. 信息融合理论及应用[M]. 北京:电子工业出版社, 2010:178-193. HE Y, WANG G H, GUAN X. Information fusion theory with applications[M]. Beijing:Publishing House of Electronics Industry, 2010:178-193(in Chinese).
[3] 董凯, 王海鹏, 刘瑜. 基于拓扑统计距离的航迹抗差关联算法[J]. 电子与信息学报, 2015, 37(1):50-55. DONG K, WANG H P, LIU Y. Anti-bias track association algorithm based on topology statistical distance[J]. Journal of Electronics &Information Technology, 2015, 37(1):50-55(in Chinese).
[4] 李洋, 张靖. 基于自适应滑动窗均值OSPA航迹关联算法[J]. 电子学报, 2016, 44(2):353-357. LI Y, ZHANG J. Track fusion based on the mean OSPA distance with an adaptive sliding window[J]. Acta Electronica Sinica, 2016, 44(2):353-357(in Chinese).
[5] 石玥, 王钺, 王树刚, 等. 基于目标参照拓扑的模糊航迹关联方法[J]. 国防科技大学学报, 2006, 28(4):105-109. SHI Y, WANG Y, WANG S G, et al. Fuzzy data association based on target topology of reference[J]. Journal of National University of Defense Technology, 2006, 28(4):105-109(in Chinese).
[6] TIAN W, WANG Y, SHAN X M, et al. Track-to-track association for biased data based on the reference topology feature[J]. IEEE Signal Processing Letters, 2014, 21(4):449-453.
[7] TIAN W, WANG Y, DU X J, et al. Reference pattern-based track-to-track association with biased data[J]. IEEE Transactions on Aerospace & Electronic Systems, 2016, 52(1):501-512.
[8] ZHU H Y, HAN S Y. Track-to-track association based on structural similarity in the presence of sensor biases[J]. Journal of Applied Mathematics, 2014, 2014:1-8.
[9] MORI S, CHANG K C, CHONG C Y. Performance prediction of feature-aided track-to-track association[J]. IEEE Transactions on Aerospace & Electronic Systems, 2014, 50(4):2593-2603.
[10] ZHU H Y, CHEN S. Track fusion in the presence of sensor biases[J]. IET Signal Process, 2014, 8(9):958-967.
[11] QI L, DONG K, LIU Y, et al. Anti-bias track-to-track association algorithm based on distance detection[J]. IET Radar, Sonar & Navigation, 2017, 11(2):269-276.
[12] 齐林, 刘瑜, 任华龙, 等. 空基多雷达航迹抗差关联算法[J]. 航空学报, 2018, 39(3):226-234. QI L, LIU Y, REN H L, et al. Air-platform multi-radar anti-bias tracks association algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2017, 39(3):226-234(in Chinese).
[13] ZHU H, LEUNG H, YUEN K V. A joint data association, registration, and fusion approach for distributed tracking[J]. Information Sciences an International Journal, 2015, 324(C):186-196.
[14] ZHU H Y, WANG C. Joint track-to-track association and sensor registration at the track level[J]. Digital Signal Processing, 2015, 41:48-59.
[15] PAPAGEORGIOU D J, SERGI J D. Simultaneous track-to-track association and bias removal using multistart local search[C]//IEEE Aerospace Conference. Piscataway, NJ:IEEE Press, 2008:1-14.
[16] HAMBRICK D, BLAIR W D. Multisensor track association in the presence of bias[C]//IEEE Aerospace Conference. Piscataway, NJ:IEEE Press, 2014:1-6.
[17] 何友, 宋强, 熊伟. 基于傅里叶变换的航迹对准关联算法[J]. 航空学报, 2010, 31(2):356-362. HE Y, SONG Q, XIONG W. A track registration-correlation algorithm based on fourier transform[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(2):356-362(in Chinese).
[18] ZHU H, WANG M L, YUEN K V, et al. Track-to-track association by coherent point drift[J]. IEEE Signal Processing Letters, 2017, 24(5):643-647.
[19] ZHU H Y, WANG W, WANG C. Robust track-to-track association in the presence of sensor biases and missed detections[J]. Information Fusion, 2016, 27:33-40.
[20] 李保珠, 董云龙, 李秀友, 等. 基于t分布混合模型的抗差关联算法[J]. 电子与信息学报, 2017, 39(7):1774-1778. LI B Z, DONG Y L, LI X Y, et al. Anti-bias track association algorithm based on t-distribution mixture model[J]. Journal of Electronics &Information Technology, 2017, 39(7):1774-1778(in Chinese).
[21] DOMINIC S, BA-TUONG V, BA-NGU V. A consistent metric for performance evaluation of multi-object filters[J]. IEEE Transactions on Signal Processing, 2008, 56(8):3447-3457.
[22] MYRONENKO A, SONG X. Point set registration:Coherent point drift[J]. IEEE Transactions on Software Engineering, 2010, 32(12):2262-2275.
[23] WU C F J. On the convergence properties of the EM algorithm[J]. The Annals of Statistics, 1983, 11(1):95-103.
文章导航

/