固体力学与飞行器总体设计

轴承支撑的舵面热模态试验及支撑刚度辨识

  • 唐晓峰 ,
  • 何振威 ,
  • 常洪振 ,
  • 史晓鸣 ,
  • 潘强 ,
  • 唐国安
展开
  • 1. 复旦大学 航空航天系, 上海 200433;
    2. 上海机电工程研究所, 上海 201109;
    3. 北京强度环境研究所, 北京 100076;
    4. 上海航天控制技术研究所, 上海 201109

收稿日期: 2018-08-20

  修回日期: 2018-10-08

  网络出版日期: 2018-11-20

基金资助

上海航天科技创新基金(SAST201605)

Thermo-modal test on an axle bearing supported rudder and identification of its supporting stiffness

  • TANG Xiaofeng ,
  • HE Zhenwei ,
  • CHANG Hongzhen ,
  • SHI Xiaoming ,
  • PAN Qiang ,
  • TANG Guoan
Expand
  • 1. Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China;
    2. Shanghai Electro-Mechanical Engineering Institute, Shanghai 201109, China;
    3. Beijing Institute of Structure and Environment Engineering, Beijing 100076, China;
    4. Shanghai Aerospace Control Technology Institute, Shanghai 201109, China

Received date: 2018-08-20

  Revised date: 2018-10-08

  Online published: 2018-11-20

Supported by

Innovation Foundation of Shanghai Aerospace Science and Technology (SAST201605)

摘要

对在大气层内及临近空间内长时间飞行的高超声速飞行器,其舵面的模态特性比固支的翼面更加复杂,除了与舵面自身的弹性模量及内部热应力有关外,还受到根部支撑刚度的较大影响,并且支撑刚度还将受到温度的影响。以轴承机构支撑的舵面为对象,考虑温度对支撑刚度的影响,建立了非固支的全动舵面支撑边界条件。通过设计舵面受热相同、支撑部位受热不同的加热工况,辨识出了连接面两侧温升对舵面支撑刚度的线性影响规律,并验证了辨识结果的有效性。结果表明:在舵面受热相同情况下,降低支撑部位的温升,可以有效减少舵面模态频率受气动加热的影响。研究结果可供安装此类舵面的飞行器防热设计参考。

本文引用格式

唐晓峰 , 何振威 , 常洪振 , 史晓鸣 , 潘强 , 唐国安 . 轴承支撑的舵面热模态试验及支撑刚度辨识[J]. 航空学报, 2019 , 40(6) : 222617 -222617 . DOI: 10.7527/S1000-6893.2018.22617

Abstract

When hypersonic vehicles fly in atmosphere and near space for a long time, the modal characteristics of their rudders are different from their fixed wings. They are not only taking effects of the elastic module and inner thermal stress of themselves, but also taking effects of the supporting stiffness near the rudder spindles, and the supporting stiffness are also under the influence of temperatures. A rudder supported by axle bearing is studied, and the effects of temperature on supporting stiffness are taking into account. Instead of adopting fixed boundary condition at the root of the rudder, a full motion rudder supporting boundary condition is setup. A heating test case is designed, in which the rudder has the same heating condition as the previous test, but the supporting area is different. A linear relationship is obtained, showing how the temperatures rising at the two sides of the spindle have effects on supporting stiffness of the rudder. In the second test case, the identification of the linear relationship is verified as effective. With the same heating condition of the rudder, reducing the temperature of the supporting area will effectively mitigate the influence of aerodynamic heating on modal frequencies of rudder, which can be referred to by the thermal protection design of vehicle with such a rudder. Some suggestions are given for the thermal protection design for vehicles with such rudders.

参考文献

[1] 沈娟, 李舰. 国外高超声速技术近期研究进展[J]. 飞航导弹, 2016(12):4-7, 27. SHEN J, LI J. Recent research progress on foreign hypersonic technology[J]. Winged Missile, 2016(12):4-7, 27(in Chinese).
[2] HANK J M, MURPHY J S, MUTZMAN R C. The X-51A scramjet engine flight demonstration program:AIAA-2008-2540[R]. Reston, VA:AIAA, 2008.
[3] MCNAMARA J J, CULLER A J, CROWELL A R. Aerothermoelastic modeling considerations for hypersonic vehicles:AIAA-2009-7397[R]. Reston, VA:AIAA, 2009.
[4] 杨超, 黄超, 吴志刚, 等. 气动伺服弹性研究的进展与挑战[J]. 航空学报, 2015, 36(4):1011-1033. YANG C, HUANG C, WU Z G, et al. Progress and challenges for aeroservoelasticity research[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1011-1033(in Chinese).
[5] MCWITHEY R R, VOSTEEN L F. Effects of transient heating on the vibration frequencies of a prototype of the X-15 wing:NASA Technical Note D-362[R]. Washington, D.C.:NASA, 1960.
[6] HEEG J, GILBERT M G, POTOTZKY A S. Static & dynamic aeroelastic characterization of an aerodynamically heated generic hypersonic aircraft configuration:NASA Technical Note N91-N10320[R]. Washington, D.C.:NASA, 1990.
[7] SPIVEY N D. High-temperature modal survey of a hot-structure control surface[C]//27th International Congress of the Aeronautical Science, 2010.
[8] 李晓东, 杨文岐, 刘浩. 基于纯随机激励的热模态试验技术研究[J]. 强度与环境, 2015, 42(2):52-56. LI X D, YANG W Q, LIU H. The study of thermo-modal test technique based on true-random excitation[J]. Structure & Environment Engineering, 2015, 42(2):52-56(in Chinese).
[9] 谭光辉, 李秋彦, 邓俊. 热模态下结构固有振动特性试验及分析[J]. 航空学报, 2016, 37(S1):32-37. TAN G H, LI Q Y, DENG J. Test and analysis of natural modal characteristics of a wing model with thermal effect[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(S1):32-37(in Chinese).
[10] 刘浩, 李晓东, 杨文岐, 等. 高速飞行器翼面热振动试验的TARMA模型方法[J]. 航空学报, 2015, 36(7):2225-2235. LIU H, LI X D, YANG W Q, et al. Investigation of thermal vibration test on wing structure of high speed flight vehicle using TARMA model method[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2225-2235(in Chinese).
[11] 吴大方, 王岳武, 蒲颖, 等. 高超声速飞行器复合材料翼面结构1100℃高温环境下的热模态试验研究[J]. 复合材料学报, 2015, 32(2):323-331. WU D F, WANG Y W, PU Y, et al. Experimental investigation of thermal modal of composite wing structure in high-temperature environments up to 1100℃ for hypersonic aircraft[J]. Acta Meteriae Compositea Sinica, 2015, 32(2):323-331(in Chinese).
[12] 吴大方, 王岳武, 商兰, 等. 1200℃高温环境下板结构热模态试验研究与数值模拟[J]. 航空学报, 2016, 37(6):1861-1875. WU D F, WANG Y W, SHANG L, et al. Test research and numerical simulation on thermal modal of plate structure in 1200℃ high-temperature environments[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6):1861-1875(in Chinese).
[13] 邱菊, 孙秦. T尾不同支持刚度的颤振分析研究[J]. 航空计算技术, 2009, 39(3):22-24. QIU J, SUN Q. Flutter analysis of T-tail according to the different supporting stiffness[J]. Aeronautical Computing Technique, 2009, 39(3):22-24(in Chinese).
[14] 沈颖, 张鹏, 寇艳丽, 等. 基于MSC. Nastran的导弹舵面颤振分析与优化[J]. 航空兵器, 2014, 51(5):19-22. SHEN Y, ZHANG P, KOU Y L, et al. Missile rudder surface flutter analysis and optimization based on MSC. Nastran[J]. Aero Weaponry, 2014, 51(5):19-22(in Chinese).
[15] 张开敏, 邓瑞清. 舵机传动机构动力学建模与分析[J]. 航空兵器, 2012, 49(4):34-38. ZHANG K M, DENG R Q. Dynamical modeling and analysis of actuator transmission system[J]. Aero Weaponry, 2012, 49(4):34-38(in Chinese).
[16] GLASS D E. Ceramic Matrix Composite(CMC) Thermal Protection Systems(TPS) and hot structures for hypersonic vehicles:AIAA-2008-2682[R]. Reston, VA:AIAA, 2008.
[17] 朱言旦, 刘骁, 曾磊, 等. 大面积气动加热的石英灯阵模拟优化设计[J]. 航空学报, 2017, 38(9):121159. ZHU Y D, LIU X, ZENG L, et al. Optimization design of aerodynamic heating of large area simulated by quartz lamp array[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):121159(in Chinese).
[18] 黄世勇, 王智勇. 热环境下的结构模态分析[J]. 导弹与航天运载技术, 2009, 25(5):50-56. HUANG S Y, WANG Z Y. The structure modal analysis with thermal environment[J]. Missile and Space Vehcile, 2009, 25(5):50-56(in Chinese).
[19] GUO Q T, ZHANG L M. Identification of the mechanical joint parameters with model uncertainty[J]. Chinese Journal of Aeronautics, 2005, 18(1):47-52.
[20] 董冠华, 殷勤, 刘蕴, 等. 基于模态分析理论的结合部动刚度辨识[J]. 振动与冲击, 2017, 36(20):125-131. DONG G H, YIN Q, LIU Y, et al. A study on the identification of joints dynamic stiffness based on modal analysis[J]. Journal of Vibration and Shock, 2017, 36(20):125-131(in Chinese).
[21] 《中国航空材料手册》编辑委员会. 中国航空材料手册, 第3卷:铝合金、镁合金[M]. 2版. 北京:中国标准出版社, 2002:76. Editorial Board of China Aeronautical Materials Handbook. China aeronautical materials handbook, volume 3:Aluminum alloy, magnesium alloy[M]. 2nd ed. Beijing:Standard Press of China, 2002:76(in Chinese).
[22] 《中国航空材料手册》编辑委员会. 中国航空材料手册, 第1卷:结构钢、不锈钢[M]. 2版. 北京:中国标准出版社, 2002:824. Editorial Board of China Aeronautical Materials Handbook. China aeronautical materials handbook, volume 1:Structural steel, stainless steel[M]. 2nd ed. Beijing:Standard Press of China, 2002:824(in Chinese).
[23] 肖乃风, 刘永清. 热振联合试验控制技术研究[J]. 强度与环境, 2012, 39(2):53-57. XIAO N F, LIU Y Q. Research of control technology in thermal-vibration test[J]. Structure & Environment Engineering, 2012, 39(2):52-57(in Chinese).
文章导航

/