航空发动机压气机转子叶片故障多由机械激励和气动激励造成,而高强声波对转子叶片的激振因素不容忽视。通过开展某型涡扇发动机压气机内部噪声测试试验,研究压气机转子叶片振动机理及其与噪声信号的对应关系。阐述了压气机内部旋转不稳定性非定常压力波作用机制,提出了基于刚性壁声波导管技术的导出式噪声测量方法,完成了某型涡扇发动机压气机内部噪声信号测试,对噪声信号进行了频谱分析和声传播特性分析。研究结果表明,某型涡扇发动机压气机内部噪声信号频谱呈现高峰值纯音分量1 402 Hz,并且该纯音分量与转子叶片通过频率呈现特定的频率组合关系。该纯音分量的噪声源在压气机内部沿发动机顺航向方向从后向前传播。利用旋转不稳定性理论,将声源频率在不同坐标系下进行转换,当噪声源周向模态数为13时,该纯音分量可调制出与高压一级转子叶片一阶振动频率相对应的激振频率。
The rotor blade fault of aero-engine compressor is mostly caused by mechanical and aerodynamic excitations. The excitation factors of high intensity sound waves to rotor blades should not be ignored. Based on the noise testing in a turbofan engine compressor, the vibration mechanism of compressor rotor blades and its corresponding relation with noise signal have been investigated. The mechanism of rotating instability unsteady pressure wave in the compressor is expounded. A noise measurement method which based on rigid wall acoustic waveguide is proposed. The internal noise signal testing of the turbofan engine compressor is completed. And the noise signal spectrum and acoustic propagation characteristics are analyzed. The results show that, the internal noise signal spectrum of the turbofan engine compressor presents a peak pure tone component of 1 402 Hz. And this tone component has a specific combination of frequencies with rotor blades. The propagation direction of this tone component noise source is from the back to the front in the airflow direction in the compressor. The noise source frequency is transformed in different coordinate systems based on the rotating instability theory. When the circumferential mode number of the noise source is thirteen, this tone component can modulate the excitation frequency corresponding to the first order vibration frequency of the first stage rotor blades of the high compressor.
[1] 陈予恕, 张华彪. 航空发动机整机动力学研究进展与展望[J]. 航空学报, 2011, 32(8):1371-1391. CHEN Y S, ZHANG H B. Review and prospect on the research of complete areo-engine systems[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8):1371-1391(in Chinese).
[2] BAUMGARTNER M, KAMEIER F, HOURMOUZIADIS J. Non-engine order blade vibration in a high pressure compressor[C]//12th International Symposium on Airbreathing Engines. Bedfordshire:ISABE, 1995.
[3] KAMEIER F, NEISE W. Rotating blade flow instability as a source of noise in axial turbomachines[J]. Journal of Sound and Vibration, 1997, 203(5):833-853.
[4] MAILACH R, LEHMAN I, VOGELER K. Rotating instabilities in an axial compressor originating from the fluctuating blade tip vortex[J]. Journal of Turbomachinery, 2001, 123:453-463.
[5] JOACHIM M, CHUNILL H, WOLFGANG N. An experimental and numerical investigation into the mechanisms of rotating instability[J]. Journal of Turbomachinery, 2002, 124:367-375.
[6] THOMASSIN J, VO H D, MUREITHI N W. Blade tip clearance flow and compressor nonsynchronous vibrations:The jet core feedback theory as the coupling mechanism[J]. Journal of Turbomachinery, 2009, 131(1):011013.
[7] THOMASSIN J, VO H D, MUREITHI N W. Blade tip clearance flow and compressor nsv:The jet core feedback theory as the coupling mechanism[C]//ASME Turbo Expo 2007:Power for Land, Sea, and Air. New York:ASME, 2007:619-628.
[8] THOMASSIN J, VO H D, MUREITHI N W. Experiment demonstration of the tip clearance flow resonance behind compressor nonsynchronous vibrations[C]//ASME Turbo Expo 2008:Power for Land, Sea, and Air. New York:ASME, 2008:653-664.
[9] DROLET M, THOMASSIN J, VO H D, et al. Numerical investigation into nonsynchronous vibrations of axial flow compressors by the resonant tip clearance flow[C]//ASME Turbo Expo 2009:Power for Land, Sea, and Air. New York:ASME, 2009:487-498.
[10] HELLMICH B, SEUME J R. Causes of acoustic resonance in a high-speed axial compressor[J]. Journal of Turbomachinery, 2008, 130(3):031003
[11] KIELB R E, BATER J W, THOMAS J P, et al. Blade excitation by aerodynamic instabilities:a compressor blade study[C]//ASME Turbo Expo 2003, Collocated with the 2003 International Joint Power Generation Conference. New York:ASME, 2003:399-406.
[12] SCHUSTER B. Axial fan noise induced by separated tip flow, flutter, and forced response[C]//11th AIAA/CEAS Aeroacoustics Conference(26th Aeroacoustics Conference). Reston, VA:AIAA, 2005:1-16.
[13] VO H D. Role of tip clearance flow in the generation of non-synchronous vibrations[C]//Proceedings of the 44th AIAA Aerospace Science Meeting and Exhibit. Reston, VA:AIAA, 2006.
[14] 林左鸣, 李克安, 杨胜群. 航空发动机压气机转子叶片声激振试验研究[J]. 动力学与控制学报, 2010, 8(1):12-18. LIN Z M, LI K A, YANG S Q. Experimental research on sound waves excitation to aero-engine compressor rotor blade[J]. Journal of Dynamics and Control, 2010, 8(1):12-18(in Chinese).
[15] 周迪, 王晓宇, 陈俊, 等. 转子叶栅非同步振荡发声特性研究[J]. 航空学报, 2015, 36(3):737-748. ZHOU D, WANG X Y, CHEN J, et al. Investigation of sound generation by nonsynchronously vibrating rotor blades[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(3):737-748(in Chinese).
[16] 武卉, 杨明绥, 王德友, 等. 多动态参数同步测试系统构建及其应用[J]. 航空学报, 2014, 35(2):391-399. WU H, YANG M Y, WANG D S, et al. Construction and application of synchronized test system of multi-dynamic parameters[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(2):391-399(in Chinese).
[17] SHA Y D, ZHAO F T, HAN J. Investigation into noise frequency spectrum characteristics corresponding to blade nonsynchronous vibration in multi-stage axial compressor[J]. Mechatronics and Information Technology, 2011, 2-3:870-875.
[18] SHA Y D, ZHAO F T, HAN J, et al. Noise characteristics corresponding to high-level rotor blades nonsynchronous vibrations in an axial compressor[J]. Applied Mechanics and Materials, 2012, 105-107:1816-1821.
[19] LIU J M, HOLSTE F, NEISE W. On the azimuthal mode structure of rotating blade flow instabilities in axial turbomachines:AIAA-1996-1741[R]. Reston, VA:AIAA, 1996.
[20] KAMEIER F, NEISE W. Experimental study of tip clearance losses and noise in axial turbomachines and their reduction[J]. Journal of Turbomachinery, 1997, 11:460-471.