电子电气工程与控制

基于解析剖面的时间协同再入制导

  • 王肖 ,
  • 郭杰 ,
  • 唐胜景 ,
  • 祁帅
展开
  • 北京理工大学 宇航学院, 北京 100081

收稿日期: 2018-07-26

  修回日期: 2018-08-15

  网络出版日期: 2018-11-14

基金资助

国家自然科学基金(11572036);北京理工大学研究生科技创新项目(2018CX10011)

Time-cooperative entry guidance based on analytical profile

  • WANG Xiao ,
  • GUO Jie ,
  • TANG Shengjing ,
  • QI Shuai
Expand
  • School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China

Received date: 2018-07-26

  Revised date: 2018-08-15

  Online published: 2018-11-14

Supported by

National Natural Science Foundation of China (11572036);Graduate Technological Innovation Project of Beijing Institute of Technology (2018CX10011)

摘要

针对高超声速滑翔飞行器再入段时间协同制导问题,提出一种基于高度-速度剖面的预测校正协同制导律。首先在高度-速度剖面内设计了参考轨迹,利用两个轨迹参数在线预测剩余飞行航程和时间;通过数值算法校正两个轨迹参数以满足航程和时间约束并求取实际控制量,结合侧向航向角走廊实现了单飞行器的时间约束再入制导。在此基础上分析了飞行器的时间可调范围,针对多飞行器协同再入任务设计了协同飞行时间和协同策略,实现了时间协同再入飞行。该策略考虑到再入过程中的通讯困难,避免了弹间通讯,且充分利用了飞行器纵向动力学,时间可控范围较大,更加适用于实际的再入过程。仿真结果说明了时间约束再入制导律对时间的可控性和协同策略的有效性。

本文引用格式

王肖 , 郭杰 , 唐胜景 , 祁帅 . 基于解析剖面的时间协同再入制导[J]. 航空学报, 2019 , 40(3) : 322565 -322565 . DOI: 10.7527/S1000-6893.2018.22565

Abstract

Aiming at the time-cooperative guidance problem for hypersonic gliding vehicles in the entry phase, a predictor-corrector cooperative guidance law based on altitude-velocity profile is proposed. Firstly, the reference trajectory is designed in the altitude-velocity profile, and the range-to-go and time-to-go are predicted online using two trajectory parameters. The two trajectory parameters are corrected by numerical algorithm to meet the range and time constraints and the actual control input is obtained. Combined with the lateral heading angle corridor, the time-constrained entry guidance is implemented for a single vehicle. On this basis, the adjustable range of the flight time of a single vehicle is analyzed. The coordination flight time and the coordination strategy are designed for multi-vehicle coordinated entry mission, realizing the time-cooperative entry flight. This strategy considers the communication difficulties in the entry process, avoids the communication between vehicles, and makes full use of the longitudinal dynamics of the vehicle, making the controllable range of flight time larger, which is more suitable for actual entry flight. Simulation results illustrate the time-controllability of the time-constrained entry guidance and the effectiveness of the coordination strategy.

参考文献

[1] 佘文学, 刘凯, 刘晶. 空天飞行器制导控制技术发展思考[J]. 战术导弹技术, 2017(4):1-10. SHE W X, LIU K, LIU J. Thoughts on the development of guidance and control technology for aerospace vehicle[J]. Tactical Missile Technology, 2017(4):1-10(in Chinese).
[2] ZHAO J, ZHOU R, JIN X L. Progress in reentry trajectory planning for hypersonic vehicle[J]. Journal of Systems Engineering and Electronics, 2014, 25(4):627-639.
[3] 高雁翎, 张梦湉, 贾晨阳. 2016年国外防空反导发展综述[J]. 战术导弹技术, 2017(2):16-20. GAO Y L, ZHANG M T, JIA C Y. Development review of world air and missile defense system in 2016[J]. Tactical Missile Technology, 2017(2):16-20(in Chinese).
[4] 赵建博, 杨树兴. 多导弹协同制导研究综述[J]. 航空学报, 2017, 38(1):17-29. ZHAO J B, YANG S X. Review of multi-missile cooperative guidance[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):17-29(in Chinese).
[5] 赵世钰, 周锐. 基于协调变量的多导弹协同制导[J]. 航空学报, 2008, 29(6):1605-1611. ZHAO S Y, ZHOU R. Multi-missile cooperative guidance using coordination variables[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(6):1605-1611(in Chinese).
[6] ZHAO J, ZHOU R, DONG Z. Three-dimensional cooperative guidance laws against stationary and maneuvering targets[J]. Chinese Journal of Aeronautics, 2015, 28(4):1104-1120.
[7] 吕腾, 吕跃勇, 李传江, 等.带空间协同的多导弹时间协同制导律[J].航空学报, 2018, 39(10):322115. LYU T, LYU Y Y, LI C J, et al. Time-cooperative guidance law for multiple missiles with spatial cooperation[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(10):322115(in Chinese).
[8] 张友安, 马国欣, 王兴平. 多导弹时间协同制导:一种领弹-被领弹策略[J]. 航空学报, 2009, 30(6):1109-1118. ZHANG Y A, MA G X, WANG X P. Time-cooperative guidance for multi-missiles:A leader-follower strategy[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(6):1109-1118(in Chinese).
[9] ENJIAO Z, CHAO T, WANG S, et al. An adaptive parameter cooperative guidance law for multiple flight vehicles[C]//AIAA Atmospheric Flight Mechanics Conference. Reston, VA:AIAA, 2015.
[10] 赵启伦, 陈建, 董希旺, 等. 拦截高超声速目标的异类导弹协同制导律[J]. 航空学报, 2016, 37(3):936-948. ZHAN Q L, CHEN J, DONG X W, et al. Cooperative guidance law for heterogeneous missiles intercepting hypersonic weapon[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(3):936-948(in Chinese).
[11] HE S, WANG W, LIN D, et al. Consensus-based two-stage salvo attack guidance[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54(3):1555-1566.
[12] HE S, KIM M, SONG T, et al. Three-dimensional salvo attack guidance considering communication delay[J]. Aerospace Science and Technology, 2018, 73:1-9.
[13] 方科, 张庆振, 倪昆, 等. 高超声速飞行器时间协同再入制导[J]. 航空学报, 2018, 39(5):321958. FANG K, ZHANG Q Z, NI K, et al. Time-coordinated reentry guidance law for hypersonic vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):321958(in Chinese).
[14] 王少平, 董受全, 李晓阳, 等. 助推滑翔高超声速反舰导弹多方向协同突防可行性研究[J]. 指挥控制与仿真, 2017, 39(2):55-60. WANG S P, DONG S Q, LI X Y, et al. Feasibility study of multi-direction coordinated penetration of the boost-glide hypersonic anti-ship missile[J]. Command Control and Simulation, 2017, 39(2):55-60(in Chinese).
[15] 赵启伦, 陈建, 李清东, 等. 高超武器与常规导弹协同攻击策略可行域研究[J]. 航空学报, 2015, 36(7):2291-2300. ZHAN Q L, CHEN J, LI Q D, et al. Feasible region of hypersonic and ballistic missiles'cooperative attack strategy[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(7):2291-2300(in Chinese).
[16] 赵頔, 沈作军. 基于在线轨迹迭代的自适应再入制导[J]. 北京航空航天大学学报, 2016, 42(7):1526-1535. ZHAO D, SHEN Z J. Adaptive entry guidance based on on-board trajectory iterations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(7):1526-1535(in Chinese).
[17] CHU H, LI J, DONG Y, et al. Improved MPSP method-based cooperative re-entry guidance for hypersonic gliding vehicles[C]//MATEC Web of Conferences, 2017.
[18] 赵汉元. 飞行器再入动力学与制导[M]. 长沙:国防科学技术大学出版社, 1997. ZHAO H Y. Spacecraft reentry dynamics and guidance[M]. Changsha:Press of National University of Defense Technology, 1997(in Chinese).
[19] SHEN Z, LU P. Onboard generation of three-dimensional constrained entry trajectories[J]. Journal of Guidance, Control, and Dynamics, 2003, 26(1):111-121.
[20] 孙勇, 段广仁, 张卯瑞, 等. 高超声速飞行器再入过程改进气动系数模型[J]. 系统工程与电子技术, 2011, 33(1):134-137. SUN Y, DUAN G R, ZHANG M R, et al. Modified aerodynamic coefficient models of hypersonic vehicle in reentry phase[J]. Journal of Systems Engineering and Electronics, 2011, 33(1):134-137(in Chinese).
[21] LU P. Entry guidance:A unified method[J]. Journal of Guidance Control and Dynamics, 2014, 37(3):713-728.
[22] LU P, BRUNNER C W, STACHOWIAK S J, et al. Verification of a fully numerical entry guidance algorithm[J]. Journal of Guidance, Control, and Dynamics, 2016, 40(2):230-247.
[23] 徐瑞民. 二元非线性方程组求根的牛顿迭代法[J]. 山东轻工业学院学报:自然科学版, 2009, 23(4):89-91. XU R M. Newton's method for the nonlinear function of two independent variables[J]. Journal of Shandong Institute of Light Industry:Natural Science, 2009, 23(4):89-91(in Chinese).
[24] NOCEDAL J, WRIGHT S J. Numerical optimization[M]. New York:Springer-Verlag, 2006.
[25] RICHIE G. The common aero vehicle:Space delivery system of the future[C]//Proceedings of the AIAA Space Technology Conference and Exposition. Reston, VA:AIAA, 1999.
文章导航

/