Transonic buffet flow over a wing is a classical complex and unstable flow case, and the research on unsteady characteristics and instability mechanism has significant engineering and academic values. By means of numerical simulation and Dynamic Mode Decomposition (DMD) analysis, this paper studies the characteristics and the dominant modes of buffet flow over wings, such as CRM (Common Research Model) wing. The results by the Unsteady Reynolds Averaged Navier-Stokes (URANS)method indicate that the 3-D transonic buffet flow is dominated by multiple instability patterns with broadband spectrum. Besides the shock oscillation along the chordwise, the spanwise oscillation is also occurred, which both display in low-frequency manners. While the high-frequency response at the wingtip may be caused by the coupling of oscillating shock and K-H type instability, the results from DMD modes show that the factors of sweep and aspect ratio result in the spanwise instability of the shock. This study has potential meaning to perform physical modeling, control and to understand complex aeroelastic phenomena associated with transonic buffet flow.
[1] 张伟伟, 高传强, 叶正寅. 机翼跨声速抖振研究进展[J]. 航空学报, 2015, 36(4):1056-1075. ZHANG W W, GAO C Q, YE Z Y. Research advances of wing/airfoil transonic buffet[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(4):1056-1075(in Chinese).
[2] GIANNELIS N F, VIO G A, LEVINSKI O. A review of recent developments in the understanding of transonic shock buffet[J]. Progress in Aerospace Science, 2017, 92(C):39-84.
[3] LEE B H K. Self-sustained shock oscillations on airfoils at transonic speeds[J]. Progress in Aerospace Sciences, 2001, 37(2):147-196.
[4] 任旭东, 赵子杰, 高超, 等. NACA0012翼型抖振现象实验研究[J]. 工程力学, 2015, 32(5):236-242. REN X D, ZHAO Z J, GAO C, et al. Experimental study on the buffet phenomenon of NACA0012 airfoil[J]. Engineering Mechanics, 2015, 32(5):236-242(in Chinese).
[5] JACQUIN L, MOLTON P, DECK S, et al. Experimental study of shock oscillation over a transonic supercritical profile[J]. AIAA Journal, 2009, 47(9):1985-1994.
[6] CHEN L W, XU C Y, LU X Y. Numerical investigation of the compressible flow past an aerofoil[J]. Journal of Fluid Mechanics, 2010, 643:97-126.
[7] CROUCH J D, GARBARUK A, MAGIDOV D. Predicting the onset of flow unsteadiness based on global instability[J]. Journal of Computational Physics, 2007, 224(2):924-940.
[8] SARTOR F, METTOT C, SIPP D. Stability, receptivity, and sensitivity analyses of buffeting transonic flow over a profile[J]. AIAA Journal, 2015, 53(7):1980-1993.
[9] BARAKOS G, DRIKAKIS D. Numerical simulation of transonic buffet flows using various turbulence closures[J]. International Journal of Heat and Fluid Flow, 2000, 21(5):620-626.
[10] GONCALVES E, HOUDEVILLE R. Turbulence model and numerical scheme assessment for buffet computations[J]. International Journal for Numerical Methods in Fluids, 2004, 46(11):1127-1152.
[11] ZHANG W W, GAO C Q, LIU Y L, et al. The interaction between flutter and buffet in transonic flow[J]. Nonlinear Dynamics, 2015, 82:1851-1865.
[12] GAO C Q, ZHANG W W, LI X T, et al. Mechanism of frequency lock-in in transonic buffeting flow[J]. Journal of Fluid Mechanics, 2017, 818:528-561.
[13] GAO C Q, ZHANG W W, YE Z Y. Reduction of transonic buffet onset for a wing with activated elasticity[J]. Aerospace Science and Technology, 2018, 77:670-676.
[14] DANDOIS J. Experimental study of transonic buffet phenomenon on a 3D swept wing[J]. Physics of Fluids, 2016, 28(1):016101.
[15] KOIKE S, UENO M, NAKAKITA K, et al. Unsteady pressure measurement of transonic buffet on NASA common research model:AIAA-2016-4044[R]. Reston, VA:AIAA, 2016.
[16] KOGA S, KOHZAI M, UENO M, et al. Analysis of NASA Common Research Model dynamic data in JAXA wind tunnel tests:AIAA-2013-0495[R]. Reston, VA:AIAA, 2013.
[17] BRUNET V, DECK S. Zonal-detached eddy simulation of transonic buffet on a civil aircraft type configuration[J]. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 2008, 97:182.
[18] GROSSI F, BRAZA M, HOARAU Y. Prediction of transonic buffet by delayed detached-eddy simulation[J]. AIAA Journal, 2014, 52(10):2300-2312.
[19] SARTOR F, TIMME S. Mach number effects on buffeting flow on a half wing-body configuration[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 2016, 26(7):2066-2080.
[20] SARTOR F, TIMME S. Delayed detached-eddy simulation of shock buffet on half wing-body configuration[J]. AIAA Journal, 2017, 55(4):1230-1240.
[21] IOVNOVICH M, RAVEH D E. Numerical study of shock buffet on three-dimensional wings[J]. AIAA Journal, 2015, 53(2):449-463.
[22] OHMICHI Y, HASHIMOTO A. Numerical investigation of transonic buffet on a three-dimensional wing using incremental mode decomposition:AIAA-2017-1436[R]. Reston, VA:AIAA, 2017.
[23] KENWAY G K, MARTINS J. Aerodynamic shape optimization of the CRM configuration including buffet-onset conditions:AIAA-2016-1249[R]. Reston, VA:AIAA, 2016.
[24] ISHIDA T, HASHIMOTO A, OHMICHI Y, et al. Transonic buffet simulation over NASA-CRM by unsteady-FaSTAR code:AIAA-2017-0494[R]. Reston, VA:AIAA, 2017.
[25] 蒋跃文. 基于广义网格的CFD方法及其应用[D]. 西安:西北工业大学, 2013. JIANG Y W. Numerical simulation of Navier-Stokes equations on generalized mesh and its application[D]. Xi'an:Northwestern Polytechnical University, 2013(in Chinese).
[26] VASSBERG J C, DEHAAN M A, RIVERS S M, et al. Development of a common research model for applied CFD validation studies:AIAA-2008-6919[R]. Reston, VA:AIAA, 2008.
[27] LEVY D W, LAFLIN K R, TINOCO E N, et al. Summary of data from the fifth AIAA CFD drag prediction workshop:AIAA-2013-0046[R]. Reston, VA:AIAA 2013.
[28] SCHMID P J. Dynamic mode decomposition of numerical and experimental data[J]. Journal of Fluid Mechanics, 2010, 656:5-28.
[29] 寇家庆, 张伟伟, 高传强. 基于POD和DMD方法的跨声速抖振模态分析[J]. 航空学报, 2016, 37(9):2679-2689. KOU J Q, ZHANG W W, GAO C Q. Modal analysis of transonic buffet based on POD and DMD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2679-2689(in Chinese).
[30] KOU J, ZHANG W. An improved criterion to select dominant modes from dynamic mode decomposition[J]. European Journal of Mechanics-B/Fluids, 2017, 62:109-129.