电子电气工程与控制

基于阻力加速度倒数剖面的再入轨迹规划与制导方法

  • 黄汉斌 ,
  • 梁禄扬 ,
  • 杨业
展开
  • 北京航天自动控制研究所, 北京 100854

收稿日期: 2018-07-20

  修回日期: 2018-08-13

  网络出版日期: 2018-10-31

Reentry trajectory planning and guidance method based on inverse drag acceleration

  • HUANG Hanbin ,
  • LIANG Luyang ,
  • YANG Ye
Expand
  • Beijing Aerospace Automatic Control Institute, Beijing 100854, China

Received date: 2018-07-20

  Revised date: 2018-08-13

  Online published: 2018-10-31

摘要

针对升力式飞行器再入制导问题,提出了一种基于阻力加速度倒数剖面的在线解析规划与制导方法。首先将过程和终端约束转换成阻力加速度倒数形式的飞行走廊,采用三次样条函数描述倒数剖面。然后通过解析计算航程上下界,利用待飞航程在倒数剖面内的近似线性关系,以满足待飞航程为目标,迭代计算得到阻力加速度倒数剖面;在飞行过程中根据当前状态和实际待飞航程,周期性更新阻力加速度倒数剖面。通过对阻力加速度剖面的跟踪进行纵向制导,解算倾侧角指令;通过倾侧角反向来进行侧向制导,限制航向角偏差。实现了再入轨迹的在线快速生成与更新,并利用阻力加速度动态特性,将其与跟踪制导结合,提出的方法效率高,适应性强,有工程应用的潜力。

本文引用格式

黄汉斌 , 梁禄扬 , 杨业 . 基于阻力加速度倒数剖面的再入轨迹规划与制导方法[J]. 航空学报, 2018 , 39(12) : 322558 -322558 . DOI: 10.7527/S1000-6893.2018.22558

Abstract

To address the entry guidance problem for the lifting vehicle, an online analytical planning and guidance method for the reentry trajectory based on the inverse drag acceleration corridor is proposed. The path constraints and terminal constraints are transformed into the inverse drag acceleration corridor described by cubic spline functions. Since the range-to-go is approximately linear in the inverse corridor, the feasible drag acceleration profile is solved analytically and updated linearly with the boundary of inverse drag acceleration. For the longitudinal tracking guidance, the guidance law (the magnitude of the bank angle) is calculated by the dynamic error characteristic of drag acceleration. For the lateral guidance, azimuth deviation is restricted by the bank angle reverse. The fast generation and update of reentry trajectory are realized online, and the method is combined with the tracking guidance technique by using the dynamic characteristics of drag acceleration. The proposed method has high computational efficiency and strong adaptability, showing potentials for engineering application.

参考文献

[1] HARPOLD J C, GAVERT D E. Space shuttle entry guidance performance results[J]. Journal of Guidance, Control, and Dynamics, 1983, 6(6):442-447.
[2] 姜鹏, 匡宇, 谢小平, 等. 国外高超声速飞行器研究现状及发展趋势[J]. 飞航导弹, 2017(7):19-24. JIANG P, KUANG Y, XIE X P, et al. Research status and development trend of hypersonic vehicle abroad[J]. Maneuverable Missile, 2017(7):19-24(in Chinese).
[3] BOGNER I. Description of apollo entry guidance:NASA TM-66-2012-2[R]. Washington D.C.:NASA, 1966.
[4] 王勇, 张艳, 白辰, 等. 吸气式高超声速飞行器制导与控制方法综述[J]. 兵器装备工程学报, 2017, 38(4):72-76. WANG Y, ZHANG Y, BAI C, et al. Review of guidance and control approaches for air-breathing hypersonic vehicle[J]. Journal of Ordnance Equipment Engineering, 2017, 38(4):72-76(in Chinese).
[5] ROENNEKE A J, MARKL A. Re-entry control of a drag vs energy profile[J]. Journal of Guidance, Control, and Dynamics, 1994, 17(5):916-920.
[6] LU P, HANSON J M. Entry guidance for the X-33 vehicle[J]. Journal of Spacecraft and Rockets, 1998, 35(3):342-349.
[7] YAN X, WANG Z. Three-dimensional trajectory planning method for hypersonic glide vehicle[C]//18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference. Reston, VA:AIAA, 2012.
[8] 陈功. 升力式再入飞行器再入制导与末端能量管理研究[D]. 哈尔滨:哈尔滨工业大学, 2011:30-42. CHEN G. Study of reentry guidance and terminal energy management for lifting vehicle[D]. Harbin:Harbin Institute of Technology, 2011:30-42(in Chinese).
[9] 赵彪. 快船式飞行器再入轨迹优化与制导方法研究[D]. 哈尔滨:哈尔滨工业大学, 2013:93-96. ZHAO B. Trajectory optimization and entry guidance for clipper vehicle[D]. Harbin:Harbin Institute of Technology, 2013:93-96(in Chinese).
[10] 王涛, 张洪波, 朱如意, 等. 考虑阻力加速度的再入预测-校正制导算法[J]. 宇航学报, 2017, 38(2):143-151. WANG T, ZHANG H B, ZHU R Y, et al. Predictor-corrector reentry guidance based on drag acceleration[J]. Journal of Astronautics, 2017, 38(2):143-151(in Chinese).
[11] WANG T, ZHANG H, ZENG L, et al. A robust predictor-corrector entry guidance[J]. Aerospace Science and Technology, 2017, 66:103-111.
[12] ISHIZUKA K, SHIMURA K, ISHIMOTO S. A reentry guidance law employing simple real-time integration[C]//AIAA Paper. Reston, VA:AIAA, 1998.
[13] SARAF A, LEAVITT J A, MEASE K D, et al. Landing footprint computation for entry vehicles[C]//AIAA Paper. Reston, VA:AIAA, 2004.
[14] LEAVITT J A, MEASE K D. Feasible trajectory generation for atmospheric entry guidance[J]. Journal of Guidance, Control, and Dynamics, 2007, 30(2):473-481.
[15] MEASE K D, CHEN D T, TEUFEL P, et al. Reduced-order entry trajectory planning for acceleration guidance[J]. Journal of Guidance, Control, and Dynamics, 2002, 25(2):257-266.
[16] DUKEMAN G A. Profile-following entry guidance using linear quadratic regulator theory[C]//AIAA GN&C Conference. Reston, VA:AIAA, 2002.
[17] HANSON J M, COUGHLIN D J, DUKEMAN G A, et al. Ascent, transition, entry, and abort guidance algorithm design for the X-33 Vehicle[C]//AIAA Paper. Reston, VA:AIAA, 1998.
[18] LEAVITT J A, SARAF A, CHEN D T, et al. Performance of evolved acceleration guidance logic for entry (EAGLE)[C]//AIAA GN&C Conference. Reston, VA:AIAA, 2002.
[19] YANG Y, LIANG L Y, WU H, et al. Onboard and analytic prediction algorithm of the range-to-go for the lifting vehicle[C]//21st AIAA International Space Planes and Hypersonics Technologies Conference. Reston, VA:AIAA, 2017.
文章导航

/