材料工程与机械制造

面向大尺度结构的力学超材料减振技术

  • 温卓群 ,
  • 王鹏飞 ,
  • 张雁 ,
  • 蒋艳芬
展开
  • 钱学森空间技术实验室, 北京 100094

收稿日期: 2018-03-09

  修回日期: 2018-06-14

  网络出版日期: 2018-10-30

基金资助

国家自然科学基金(U163720007)

Vibration reduction technology of mechanical metamaterials presented to large scale structures

  • WEN Zhuoqun ,
  • WANG Pengfei ,
  • ZHANG Yan ,
  • JIANG Yanfen
Expand
  • Qian Xuesen Laboratory of Space Technology, Beijing 100094

Received date: 2018-03-09

  Revised date: 2018-06-14

  Online published: 2018-10-30

Supported by

National Natural Science Foundation of China (U163720007)

摘要

随着航天器的大型化发展,振动控制策略已成为被广泛关注的关键技术之一,尤其针对大尺度薄膜结构的低频振动问题,传统减振方法难以发挥作用。为此,提出了基于局域共振原理的力学超材料结构,并利用该材料设计了一种新型的中低频被动减振结构,通过改变超材料单元结构可显著调控减振带隙的位置与带宽,被动减振频率最低可达100 Hz以内,对未来航天器的振动控制有一定的指导意义。

本文引用格式

温卓群 , 王鹏飞 , 张雁 , 蒋艳芬 . 面向大尺度结构的力学超材料减振技术[J]. 航空学报, 2018 , 39(S1) : 721651 -721651 . DOI: 10.7527/S1000-6893.2018.21651

Abstract

As spacecrafts are growing larger, the vibration control strategy has become one of the critical technologies of wide concern. Traditional vibration reduction methods have many limitations, especially for the low frequency vibration problem of large-scale thin-film structures. To solve this problem, a novel structure of the mechanical metamaterial for compromising low-and medium-frequency vibration is presented based on the local resonance principle. Changing the unit structure of metamaterials can significantly adjust the position and width of the acoustic band gap. The lowest frequency of this metamaterial structure sits below 100 Hz through passively damping vibration, which will massively contribute to vibration control of spacecraft in the future.

参考文献

[1] 刘斌, 冯涛, 吴雪, 等. 斜桶式滚筒洗衣机工作变形与低频噪声分析[J]. 噪声与振动控制, 2010, 30(3):50-54. LIU B, FENG T, WU X, et al. ODS & low-frequency noise analysis on the tilt open drum washing machine[J]. Noise and Vibration Control, 2010, 30(3):50-54(in Chinese).
[2] ROUNDY S. On the effectiveness of vibration-based energy harvesting[J]. Journal of Intelligent Material Systems and Structures, 2005, 16(10):809-823.
[3] 吴九汇. 噪声分析与控制[M].西安:西安交通大学出版社,2011. WU J H. Noise analysis and control[M]. Xi'an:Xi'an Jiaotong University Press, 2011(in Chinese).
[4] 温熙森, 温激鸿, 郁殿龙, 等. 声子晶体[M]. 北京:国防工业出版社, 2009. WEN X S, WEN J H, YU D L, et al. Phononic crystals[M]. Beijing:National Defense Industry Press, 2009(in Chinese).
[5] 浦玉学. 自适应振动噪声主动控制若干关键问题研究[D]. 南京:南京航空航天大学, 2015. PU Y X. Study on some key problems of active control of adaptive vibration noise[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015(in Chinese).
[6] 张思文. 局域共振声子带隙理论及其在低频减振降噪中的应用[D]. 西安:西安交通大学, 2014. ZHANG S W. Locally resonant bandgaps and their applications in low-frequency vibration and noise reduction[D]. Xi'an:Xi'an Jiaotong University, 2014(in Chinese).
[7] 吴九汇, 马富银, 张思文, 等. 声学超材料在低频减振降噪中的应用评述[J]. 机械工程学报, 2016, 52(13):68-78. WU J H, MA F Y, ZHANG S W, et al. Application of acoustic metamaterials in low-frequency vibration and noise reduction[J]. Journal of Mechanical Engineering, 2016, 52(13):68-78(in Chinese).
[8] 夏益霖, 吴家驹. 航天发射的低频振动环境及其模拟[J]. 强度与环境, 1998(1):1-8. XIA Y L, WU J J. Low-frequency vibration environment and simulation of space launch[J]. Strength and Environment, 1998(1):1-8(in Chinese).
[9] 洪俊青, 刘伟庆. 地铁对周边建筑振动影响分析[J]. 振动与冲击, 2006, 25(4):142-145. HONG J Q, LIU W Q. The vibration effect analysis of subway surrounding building[J]. Journal of Vibration and Shock, 2006, 25(4):142-145(in Chinese).
[10] JOHN S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 1987, 58(23):2486-2489.
[11] VASSEUR J O, DEYMIER P A, KHELIF A, et al. Phononic crystal with low filling fraction and absolute acoustic band gap in the audible frequency range:A theoret-ical and experimental study[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2002, 65(5):056608.
[12] ESPINOSA F R M D, JIMENIZ E, TORRES M. Experimental assessment of an ultrasonic band gap in a periodic two-dimensional composite[J]. Ultrasonics Symposium, 1997, 1:537-540.
[13] SIGALAS M M, ECONOMOU E N. Elastic and acoustic wave band structure[J]. Journal of Sound & Vibration, 1992, 158(2):377-382.
[14] JOANNOPOULOS J D, JOHNSON S G, WINN J N, et al. Photonic crystals molding the flow of light[M]. Princeton:Princeton University Press, 2008.
[15] 温熙森. 光子/声子晶体理论与技术[M]. 北京:科学出版社, 2006. WEN X S. Theory and technology of photon and phonon crystal[M]. Beijing:Science Press, 2006(in Chinese).
[16] YU X, ZHOU J, LIANG H, et al. Mechanical metamaterials associated with stiffness, rigidity and compressibility:A brief review[J]. Progress in Materials Science, 2017, 94:116-117.
文章导航

/