流体力学与飞行力学

CRM-WBPN风洞试验模型数值模拟

  • 孟德虹 ,
  • 李伟 ,
  • 王运涛 ,
  • 孙岩
展开
  • 1. 中国空气动力研究与发展中心 计算空气动力研究所, 绵阳 621000;
    2. 中国空气动力研究与发展中心 空气动力学国家重点实验室, 绵阳 621000

网络出版日期: 2018-10-29

基金资助

国家重点研究发展计划(2016YFB0200703)

Numerical simulation of CRM-WBPN wind tunnel test model

  • MENG Dehong ,
  • LI Wei ,
  • WANG Yuntao ,
  • SUN Yan
Expand
  • 1. Computational Aerodynamics Institute, China Aerodynamics Research and Development Center, Mianyang 621000, China;
    2. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China

Online published: 2018-10-29

Supported by

National Key R&D Program of China (2016YFB0200703)

摘要

基于雷诺平均Navier-Stokes(RANS)方程和多块对接结构网格技术,采用亚跨超CFD软件平台(TRIP 3.0),研究了共同研究模型(CRM)风洞模型支撑装置对CRM翼/身/架/舱(CRM-WBPN)模型压力分布及气动特性的影响。构造了一个包含小、粗、中、细网格的4套网格,并进行了网格收敛性研究,在升力系数为0.50条件下,开展了固定升力系数下模型支撑对CRM-WBPN模型和CRM-WB模型压力分布及挂架短舱阻力增量的影响,以及不同来流迎角下模型支撑对CRM-WBPN模型气动特性的影响。通过与NASA国家跨声速风洞设备(NTF)试验结果和CRM-WB模型数值模拟结果的对比分析,表明模型支撑对固定升力系数下挂架短舱阻力增量影响较小;在计算构型中考虑模型支撑的影响,引起升力系数和阻力系数下降、俯仰力矩系数增加,数值模拟结果更加接近相应的试验结果。

本文引用格式

孟德虹 , 李伟 , 王运涛 , 孙岩 . CRM-WBPN风洞试验模型数值模拟[J]. 航空学报, 2019 , 40(2) : 522402 -522402 . DOI: 10.7527/S1000-6893.2018.22402

Abstract

Based on the Reynolds-Averaged Navier-Stokes(RANS) equations and the structured grid (point to point) technology, the effects of support system on the aerodynamic characteristics of CRM Wing/Body/Pylon/Nacelle (CRM-WBPN) configuration are studied by using TRIP 3.0 (Trisonic Platform version 3.0). A grid family, which includes a tiny, coarse, medium, and fine grid, is constructed, and grid convergence study is presented. The effect of support system on the drag increment between CRM-WBPN and CRM-WB model is discussed on lift coefficient 0.50. The influence of support system on the aerodynamic characteristics of CRM-WBPN is provided at different angles of attack. Compared with the experimental data from the NASA Langley National Transonic Facility (NTF) and the numerical results of the CRM-WB model, the present numerical results show that the support system has mild effect on the drag increment between WBPN and WB. The inclusion of support system into the computation model decreases the lift coefficient and drag coefficient, and increases the pitching moment coefficient. The numerical results of WBPNS model more closely match with the experimental results.

参考文献

[1] LEVY D W, VASSBERG J C, WAHLS R A, et al. Summary of data from the first AIAA CFD drag prediction workshop[J]. Journal of Aircraft, 2003, 40(5):875-882.
[2] LAFLIN K R, VASSBERG J C, WAHLS R A, et al. Summary of data from the second AIAA CFD drag prediction workshop[J]. Journal of Aircraft, 2005, 42(5):1165-1178.
[3] VASSBERG J C, TINOCO E N, MANI M, et al. Abridged summary of the third AIAA CFD drag prediction workshop[J]. Journal of Aircraft, 2008, 45(3):781-798.
[4] VASSBERG J C, TINOCO E N, MANI M, et al. Summary of the fourth AIAA computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4):1070-1089.
[5] LEVY D W, LAFLIN K R, TINOCO E N, et al. Summary of data from the fifth computational fluid dynamics drag prediction workshop[J]. Journal of Aircraft, 2014, 51(4):1194-1213.
[6] TINOCO E N, BRODERSEN O P, KEYE S, et al. Summary data from the sixth AIAA CFD drag prediction workshop:CRM cases[J]. Journal of Aircraft, 2017(4):1-28.
[7] 王运涛. DPWⅣ~DPWⅣ数值模拟技术综述[J]. 航空学报, 2018, 39(4):021836. WANG Y T. An overview of DPWⅣ-DPWⅣ numerical simulation technology[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):021836(in Chinese).
[8] VASSBERG J C, DEHAAN M A, RIVERS S M, et al. Development of a common research model for applied CFD validation studies:AIAA-2008-6919[R]. Reston, VA:AIAA, 2008.
[9] RIVERS M B, DITTBEMER A. Experimental investigation of the NASA common research model:AIAA-2010-4218[R]. Reston, VA:AIAA, 2010.
[10] RIVERS M B, DITTBEMER A. Experimental investigation of the NASA common research model in the NASA Langley transonic facility and NASA Ames 11-ft transonic wind tunnel:AIAA-2011-1126[R]. Reston, VA:AIAA, 2011
[11] RIVERS M B, HUNTER C A. Support system effects on the NASA common research model:AIAA-2012-0707[R]. Reston, VA:AIAA, 2012.
[12] RIVERS M B, HUNTER C A, CAMPBELL R L. Further investigation of the support system effects and wing twist on the NASA common research model:AIAA-2012-3209[R]. Reston, VA:AIAA, 2012.
[13] DAVID H U E. CFD investigation on the DPW-5 configuration with measured experimental wing twist using the elsA slover and the far-field approach:AIAA-2013-2508[R]. Reston, VA:AIAA, 2013.
[14] KEYE S, BRODERSEN O, RIVERS M B, et al. Investigation of aeroelastic effects on the NASA common research model[J]. Journal of Aircraft, 2014, 51(4):1323-1330.
[15] 王运涛, 孙岩, 孟德虹, 等. 包含支撑装置和机翼变形的CRM-WB构型气动特性数值模拟[J]. 航空学报, 2017, 38(10):121202. WANG Y T, SUN Y, MENG D H, et al. Numerical simulation of aerodynamic characteristics of CRM-WB configuration with support system and wing deformation[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(10):121202(in Chinese).
[16] 王运涛, 孙岩, 孟德虹, 等. CRM翼身组合体模型高阶精度数值模拟[J]. 航空学报, 2017, 38(3):120298. WANG Y T, SUN Y, MENG D H, et al. High-order numerical simulation of CRM wing-body model[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):120298(in Chinese).
[17] 孟德虹, 孙岩, 王运涛, 等. CRM-WB构型风洞试验模型数值模拟[C]//第十七届全国计算流体力学会议论文集, 2017. MENG D H, SUN Y, WANG Y T, et al. Numerical simulation of CRM-WB wind tunnel model[C]//17th National Conference for Computational Fluid Dynamics, 2017(in Chinese).
[18] 王运涛, 王光学, 张玉伦. DPW Ⅲ机翼和翼身组合体构型数值模拟[J]. 空气动力学学报, 2011, 29(3):264-269. WANG Y T, WANG G X, ZHANG Y L. Numerical simulation of DPW Ⅲ wing and wing-body configurations[J]. Acta Aerodynamica Sinica, 2011, 29(3):264-269(in Chinese).
[19] 王运涛, 张书俊, 孟德虹. DPW4翼/身/平尾组合体的数值模拟[J]. 空气动力学学报, 2013, 31(6):739-744. WANG Y T, ZHANG S J, MENG D H. Numerical simulation and study for DPW4 wing/body/tail[J]. Acta Aerodynamica Sinica, 2013, 31(6):739-744(in Chinese).
[20] VAN LEER B. Towards the ultimate conservation differences scheme Ⅱ, monoticity and conservation combined in a second order scheme[J]. Journal of Computational Physics, 1974, 14:361-370.
[21] MENTER F R. Two equation eddy viscosity turbulence models for engineering application[J]. AIAA Journal, 1994, 32(8):1598-1605.
[22] YOON S, JAMESON A. Lower-upper symmetric Gauss-Sediel method for the Euler and Navier-Stokes equation[J]. AIAA Journal, 1988, 26(9):1025-1026.
文章导航

/