舰载机气动强度与着舰安全性关键技术专栏

舰载机机身加筋壁板屈曲疲劳试验

  • 张彦军 ,
  • 朱亮 ,
  • 杨卫平 ,
  • 李小鹏 ,
  • 雷晓欣
展开
  • 航空工业第一飞机设计研究院 强度设计研究所, 西安 710089

收稿日期: 2018-05-07

  修回日期: 2018-07-09

  网络出版日期: 2018-10-31

Buckling fatigue test of fuselage stiffened panel for carrier-based aircraft

  • ZHANG Yanjun ,
  • ZHU Liang ,
  • YANG Weiping ,
  • LI Xiaopeng ,
  • LEI Xiaoxin
Expand
  • Department of Strength Design, AVIC The First Aircraft Institute, Xi'an 710089, China

Received date: 2018-05-07

  Revised date: 2018-07-09

  Online published: 2018-10-31

摘要

舰载机弹射起飞和拦阻着舰的张力场屈曲波在机身壁板上产生附加的拉伸或弯曲应力,从而显著降低结构疲劳强度、改变疲劳破坏部位。以张力场梁形式的三点弯曲试验开展了反复屈曲下的疲劳特性研究。通过疲劳试验测得的临界屈曲载荷与按工程张力场理论得到的临界屈曲载荷对比,吻合较好。根据3级不同载荷水平下的疲劳试验结果,给出了张力场梁屈曲疲劳试件的无量纲载荷比-寿命曲线及载荷比-张力场系数曲线。根据张力场系数与载荷关系、载荷寿命曲线及飞机寿命指标可控制张力场的严酷程度来开展机身壁板轻量化设计。本项工作为舰载机机身壁板在弹射起飞和拦阻着舰过程中的反复屈曲疲劳问题评定积累了数据。

本文引用格式

张彦军 , 朱亮 , 杨卫平 , 李小鹏 , 雷晓欣 . 舰载机机身加筋壁板屈曲疲劳试验[J]. 航空学报, 2019 , 40(4) : 622276 -622276 . DOI: 10.7527/S1000-6893.2018.22276

Abstract

During the catapult launch and the arrested landing processes for carrier-based aircraft, buckling waves of the tension field at fuselage panel will induce additional tension or bending stress, which significantly decreases the structural fatigue strength and changes the fatigue failure position. The fatigue behavior under repeated buckling is studied through three-point bending test of tension-field spar. The critical buckling load measured from the test matches well with that obtained by adopting the engineering tension field theory. Then, the curves of normalized load ratio vs fatigue life and the curves of normalized load ratio vs tensile field factor are derived from the buckling fatigue test under three different load levels. Finally, the lightweight design of stiffened panel can be realized by controlling the severe level of tensile field based on the relationship between tensile field factor and load and curve of load vs life as well as design service goal of the aircraft. This paper accumulates beneficial data for repeated buckling fatigue evaluation of carrier-based aircraft during the catapult launch and arrested landing.

参考文献

[1] 李守泽, 罗延生. E-2系列舰载预警机[M]. 北京:航空工业出版社, 2013. LI S Z, LUO Y S. E-2 Hawkeye airborne early warning aircraft[M]. Beijing:Aviation Industry Press, 2013(in Chinese).
[2] 何敏, 朱小龙, 刘晓明, 等. 舰载机前机身结构地面弹射冲击响应[J]. 航空学报, 2018, 39(5):221711. HE M, ZHU X L, LIU X M, et al. Impact response of ground ejection of front fuselage structure of carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):221711(in Chinese).
[3] 豆清波, 杨智春, 刘小川, 等. 舰载机全机落震试验方法[J]. 航空学报, 2017, 38(3):220421. DOU Q B, YANG Z C, LIU X C, et al. Test method for full scaled drop of carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):220421(in Chinese).
[4] 薛景川, 贺恭泰, 宋湘臣, 等. 薄壁结构剪切屈曲疲劳研究[J]. 航空学报, 1989, 10(12):B607-B613. XUE J C, HE G T, SONG X C, et al. A study of shear-buckling fatigue for thin-walled structures[J]. Acta Aeronautica et Astronautica Sinica, 1989, 10(12):B607-B613(in Chinese).
[5] 孙为民, 童明波, 董登科, 等. 民机大型加筋曲板在剪切载荷下失效破坏试验[J]. 南京航空航天大学学报, 2008, 40(4):521-525. SUN W M, TONG M B, DONG D K,et al. Failure damage experiments of stiffened panels subjected to shear loading[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2008, 40(4):521-525(in Chinese).
[6] 张铎, 姜晋庆, 南宫自军. 薄壁结构后屈曲应力分析[J]. 西北工业大学学报, 1995, 13(4):495-499. ZHANG D, JIANG J Q, NANGONG Z J. Post buckling tension field behavior of quadrilateral panel[J]. Journal of Northwestern Polytechnical University, 1995, 13(4):495-499(in Chinese).
[7] ARNOLD R R, PAREKH J C. Buckling, post buckling, and failure of stiffened panels under shear and compression[J]. Journal of Aircraft, 1987, 24(11):803-811.
[8] WILLIAMS P A, KIM H A, BUTLER R. Bimodal buckling of optimized truss-lattice shear panels[J]. AIAA Journal, 2008, 46(8):1937-1943.
[9] 张建武. 复合结构剪切板的屈曲与后屈曲研究[J]. 力学学报, 1994, 26(2):176-185. ZHANG J W. Investigation to the buckling and post buckling behavior of shear-flexible plates of composite construction[J]. Acta Mechanica Sinica, 1994, 26(2):176-185(in Chinese).
[10] WITTENBERG T C, BATEN T J. Shear buckling curves for flat stiffened panels with application to glare material[C]//44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and Materials Conferee. Reston, VA:AIAA, 2003.
[11] DAVILA C G, BISAGNI C, ROSE C A. Effect of buckling modes on the fatigue life and damage tolerance of stiffened structures[C]//56th AIAA/ASCE/AHS/ASC Stru-ctures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2015.
[12] LAHUERTA F, KOORN N, SMISSAERT D. Wind turbine blade trailing edge failure assessment with sub-component test on static and fatigue load conditions[J]. Composite Structures, 2018, 204:755-766.
[13] TRIPATHI M, DHAKAL R P, DASHTI F, et al. Low-cycle fatigue behavior of reinforcing bars including the effect of inelastic buckling[J]. Construction and Building Materials, 2018, 190:1226-1235.
[14] 张铁军, 李曙林, 常飞, 等. 复合材料加筋壁板多点冲击损伤和高周剪切疲劳试验[J]. 航空动力学报, 2017, 32(12):2872-2879. ZHANG T J, LI S L, CHANG F, et al. Test of multi-impact damage and high-cycle shear fatigue of stiffened composite panels[J]. Journal of Aerospace Power, 2017, 32(12):2872-2879(in Chinese).
[15] 兑红娜, 王勇军, 董江, 等. 基于飞参的飞机结构载荷最优回归模型研究[J]. 航空学报, 2018, 39(11):222158. DUI H N, WANG Y J, DONG J, et al. Flight data based aircraft structural load optimal regression model[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(11):222158(in Chinese).
[16] 陈勇, 廖高健, 任立海, 等. 玻璃纤维增强铝合金层板高速冲击损伤容限[J]. 航空学报, 2018, 39(7):221733. CHEN Y, LIAO G J, REN L H, et al. Damage tolerance of GLARE laminates subjected to high velocity impact[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(7):221733(in Chinese).
[17] 齐红宇. 复合材料及发动机机匣的屈曲与疲劳研究[D]. 南京:南京航空航天大学, 2001. QI H Y. Study on buckling and fatigue life of composite and aeroengine composite case[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2001(in Chinese).
[18] 肖浩, 胡伟平, 张淼, 等. 薄板的后屈曲损伤分析与疲劳寿命预估[J]. 北京航空航天大学学报, 2015, 41(3):523-528. XIAO H, HU W P, ZHANG M,et al. Post-buckling damage analysis and fatigue life prediction of thin plate[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(3):523-528(in Chinese).
[19] SEDLACK M A, DEANE S, FELEMBAN B, et al. Testing and modeling of thermomechanical buckling fatigue in combined extreme environments[C]//AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Material Conference. Reston, VA:AIAA, 2018.
[20] 沈家桢, 范祖尧. 纯剪腹板张力场承载能力[J]. 上海交通大学学报, 1981(3):57-73. SHEN J Z, FAN Z Y. The load-bearing capacity of the pure shear web in tensionfield[J]. Journal of Shanghai Jiaotong University, 1981(3):57-73(in Chinese).
[21] 《飞机设计手册》总编委会. 飞机设计手册第9册载荷、强度和刚度[M]. 北京:航空工业出版社, 2001. The Chief Committee of Aircraft Design Manual. Aircraft design manual Vol. 9:Load, strength and stiffness[M]. Beijing:Aviation Industry Press, 2001(in Chinese).
文章导航

/