材料工程与机械制造

空间对称型7R机构运动特性分析及组合应用

  • 韩博 ,
  • 许允斗 ,
  • 姚建涛 ,
  • 郑东 ,
  • 张硕 ,
  • 赵永生
展开
  • 1. 燕山大学 河北省并联机器人与机电系统实验室, 秦皇岛 066004;
    2. 燕山大学 先进锻压成型技术与科学教育部重点实验室, 秦皇岛 066004

收稿日期: 2018-07-13

  修回日期: 2018-08-06

  网络出版日期: 2018-10-10

基金资助

国家自然科学基金(51675458);河北省自然科学基金重点项目(E2017203335);河北省高等学校青年拔尖人才计划项目(BJ2017060)

Kinematic characteristics analysis and assembly application of a spatial symmetric 7R mechanism

  • HAN Bo ,
  • XU Yundou ,
  • YAO Jiantao ,
  • ZHENG Dong ,
  • ZHANG Shuo ,
  • ZHAO Yongsheng
Expand
  • 1. Parallel Robot and Mechatronic System Laboratory of Hebei Province, Yanshan University, Qinhuangdao 066004, China;
    2. Key Laboratory of Advanced Forging & Stamping Technology and Science of Ministry of Education, Yanshan University, Qinhuangdao 066004, China

Received date: 2018-07-13

  Revised date: 2018-08-06

  Online published: 2018-10-10

Supported by

National Natural Science Foundation of China (51675458); Key Project of Natural Science Foundation of Hebei Province (E2017203335); Youth Top Talent Project of Hebei Province Higher Education (BJ2017060)

摘要

提出了一种空间对称型7R机构,可利用此机构组合构造空间可展开机构。通过旋量拓扑图分析了其整体自由度,得到了其运动副轴线方位变化时整体机构自由度数目的变化情况;基于反螺旋理论分析了运动副轴线方位不同的情况下运动输出构件的自由度数目和性质,并针对其瞬时性做了判别,发现其在不同运动副轴线方位布置情况下会出现局部自由度与瞬时自由度;分析了机构在不同驱动情况下的奇异特性,得到了机构在不同的驱动下处于奇异位形时的几何条件;最后选定自由度为1时的空间对称型7R机构组合构造了一类单自由度多棱锥型空间可展开机构,通过设置其运动副轴线方位,可以使其具有较大收拢率,同时当机构完全展开时,奇异特性使得其具有较好的力学性能。通过多个棱锥型空间可展开机构的组合,可以构造出新型大尺度空间可展开机构,在航空航天领域具有较好的应用前景。

本文引用格式

韩博 , 许允斗 , 姚建涛 , 郑东 , 张硕 , 赵永生 . 空间对称型7R机构运动特性分析及组合应用[J]. 航空学报, 2019 , 40(4) : 422536 -422536 . DOI: 10.7527/S1000-6893.2018.22536

Abstract

A spatial symmetric 7R mechanism is proposed in this paper, constructing space deployable mechanisms. Firstly, the overall degree of freedom (DOF) is analyzed based on the screw constraint topology diagram, obtaining the variation of DOFs of the whole mechanism when the orientation of the joint axes changes. Then, the number and nature of DOFs of the motion output component in different orientations of the joint axes are analyzed based on the inverse screw theory. and the transient nature of the DOFs are analyzed. It is found that passive DOF and instantaneous DOF occurred in the arrangement of different joint axes orientations. Furthermore, the singular characteristics of the mechanism in different driving conditions are analyzed, obtaining the geometric conditions of the mechanism in the singular configuration under different driving conditions. Finally, a class of single-DOF polygonal pyramid-shaped space deployable mechanism is constructed by combining spatial symmetric 7R mechanisms with DOF at one. By setting the joint axes orientations, the mechanism yields a large folding rate, and due to its singular properties, it has good mechanical properties. Through the combination of a plurality of pyramid-shaped space deployable mechanisms, new large-scale space deployable mechanisms can be constructed, showing good application prospects in the aerospace field.

参考文献

[1] DAS A, OBAL M W. Revolutionary satellite structural systems technology:A vision for the future[C]//1998 IEEE Aerospace Applications Conference Proceedings. Piscataway, NJ:IEEE Press, 1998:57-67.
[2] SHIMIZU M. Surface adjustment of modular mesh antenna[C]//Antennas and Propagation Society International Symposium. Piscataway, NJ:IEEE Press, 1994:2066-2069.
[3] THOMSONM W. The AstroMesh deployable reflector[C]//Antennas and Propagation Society International Symposium. Piscataway, NJ:IEEE Press, 2002:1516-1519.
[4] 黄志荣, 郑士昆, 朱佳龙, 等. 环境一号C星构架反射器展开驱动部件优化设计[J]. 雷达学报, 2014, 3(3):282-287. HUANG Z R, ZHENG S K, ZHU J L, et al. Design optimization of expansion driven components for the HJ-1-C satellite[J]. Journal of Radars, 2014, 3(3):282-287(in Chinese).
[5] LU S N, ZLATANOV D, DING X L, et al. A new family of deployable mechanisms based on the Hoekens linkage[J]. Mechanism and Machine Theory, 2014, 73(2):130-153.
[6] 杨毅, 张武翔. 一类空间对称6R机构的运动学研究及组合应用[J]. 航空学报, 2014, 35(12):3459-3469. YANG Y, ZHANG W X. Kinematic investigation and assembly application of a spatial symmetric 6R mechanism[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(12):3459-3469(in Chinese).
[7] VU K K, LIEW J Y R, ANANDASIVAM K. Deployable tension-strut structures:From concept to implementation[J]. Journal of Constructional Steel Research, 2006, 62(3):195-209.
[8] CHEN Y, YOU Z. On mobile assemblies of Bennett linkages[J]. Proceedings Mathematical Physical and Engineering Sciences, 2008, 464(2093):1275-1293.
[9] CHENY, YOU Z, TARNAI T. Threefold-symmetric Bricard linkages for deployable structures[J]. International Journal of Solids and Structures, 2005, 42(8):2287-2301.
[10] 韩博, 许允斗, 姚建涛, 等. 剪叉联动式双层环形桁架可展开天线机构设计与分析[J]. 载人航天, 2017, 23(3):306-310. HAN B, XU Y D, YAO J T, et al. Design and analysis of scissors linkage double ring truss deployable antenna mechanism[J]. Manned Spaceflight, 2017, 23(3):306-310(in Chinese).
[11] QIX Z, DENG Z Q, LI B, et al. Design and optimization of large deployable mechanism constructed by Myard linkages[J]. Ceas Space Journal, 2013, 5:147-155.
[12] 刘文兰, 许允斗, 姚建涛, 等. 3R-3URU可展单元机构及其在构架式可展天线中的应用[J]. 航空学报, 2017, 38(11):313-323. LIU W L, XU Y D, YAO J T, et al. Research on the deployable unit 3R-3URU and its application in the deployable truss antenna[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(11):313-323(in Chinese).
[13] 史创, 郭宏伟, 刘荣强, 等. 双层环形可展开天线机构构型优选及结构设计[J]. 宇航学报, 2016, 37(7):869-878. SHI C, GUO H W, LIU R Q, et al. Configuration optimization and structure design of the double-layer hoop deployable antenna mechanism[J]. Journal of Astronautics, 2016, 37(7):869-878(in Chinese).
[14] 岳建如, 关富玲, 陈向阳. 大型可展构架式星载抛物面天线结构设计[J]. 浙江大学学报(工学版), 2001, 35(3):238-243. YUE J R, GUAN F L, CHEN X Y. A large deployable hexapod paraboloid antenna[J]. Journal of Zhejiang University(Engineering Science), 2001, 35(3):238-243(in Chinese).
[15] WANG Y, DENG Z Q, LIU R Q, et al. Topology structure synthesis and analysis of spatial pyramid deployable truss structures for satellite SAR antenna[J]. Chinese Journal of Mechanical Engineering, 2014, 27(4):683-692.
[16] 杨毅, 丁希仑. 基于空间多面体向心机构的伸展臂设计研究[J]. 机械工程学报, 2011, 47(5):26-34. YANG Y, DING X L. Design and analysis of mast based on spatial polyhedral linkages mechanism along radial axes[J]. Journal of Mechanical Engineering, 2011, 47(5):26-34(in Chinese).
[17] 杨毅, 丁希仑. 四棱锥单元平板式可展开收拢机构的运动特性分析[J]. 航空学报, 2010, 31(6):1257-1265. YANG Y, DING X L. Kinematic analysis of a plane deployable mechanism assembled by four pyramid Cells[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(6):1257-1265(in Chinese).
[18] 许允斗, 刘文兰, 陈亮亮, 等. 构架式可展天线机构自由度分析——拆杆等效法[J]. 航空学报, 2017, 38(9):316-327. XU Y D, LIU W L, CHEN L L, et al. Mobility analysis of a deployable truss-antenna mechanism-Method based on link-demolishing and equivalent idea[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):316-327(in Chinese).
[19] ZHAO J S, CHU F L, FENG Z J. The mechanism theory and application of deployable structures based on SLE[J]. Mechanism and Machine Theory, 2009, 44(2):324-335.
[20] 李端玲, 张忠海, 于振. 球面剪叉可展机构的运动特性分析[J]. 机械工程学报, 2013, 49(13):1-7. LI D L, ZHANG Z H, YU Z. Kinematic characteristic analysis of spherical scissors deployable mechanisms[J]. Journal of Mechanical Engineering, 2013, 49(13):1-7(in Chinese).
[21] WEI G W, DING X L, DAI J S. Mobility and geometric analysis of the Hoberman Switch-Pitch Ball and its variant[J]. Journal of Mechanisms and Robotics, 2009, 2(3):191-220.
[22] SUN Y T, WANG S M, LI J F, et al. Mobility analysis of the deployable structure of SLE based on screw theory[J]. Chinese Journal of Mechanical Engineering, 2013, 26(4):793-800.
[23] SUN Y T, WANG S M, MILLS J K, et al. Kinematics and dynamics of deployable structures with scissor-like-elements based on screw theory[J]. Chinese Journal of Mechanical Engineering, 2014, 27(4):655-662.
[24] 史创, 郭宏伟, 刘荣强, 等. 双层环形可展开天线机构设计与力学分析[J]. 哈尔滨工业大学学报, 2017, 49(1):14-20. SHI C, GUO H W, LIU R Q, et al. Mechanism design and mechanical analysis of a double-layer loop deployable antenna[J]. Journal of Harbin Institute of Technology, 2017, 49(1):14-20(in Chinese).
[25] 谢碧云, 赵京, 刘宇. 基于快速扩展随机树的7R机械臂避障达点运动规划[J]. 机械工程学报, 2012, 48(3):63-69. XIE B Y, ZHAO J, LIU Y. Motion planning of reaching point movements for 7R robotic manipulators in obstacle environment based on rapidly-exploring random tree algorithm[J]. Journal of Mechanical Engineering, 2012, 48(3):63-69(in Chinese).
[26] 王品, 廖启征, 庄育锋, 等. 一般7R串联机器人标定的仿真与实验[J]. 机器人, 2006, 28(5):483-487. WANG P, LIAO Q Z, ZHUANG Y F, et al. Simulation and experimentation for calibration of general 7R serial robots[J]. Robot, 2006, 28(5):483-487(in Chinese).
[27] 卫沅, 赵京. 基于运动捕捉下的7R机械臂的实时控制[J]. 机械工程学报, 2013, 49(23):68-73. WEI Y, ZHAO J. Real-time control of 7R manipulator based on motion capture[J]. Journal of Mechanical Engineering, 2013, 49(23):68-73(in Chinese).
[28] 霍希建, 刘伊威, 姜力, 等. 具有关节限位的7R仿人机械臂逆运动学优化[J]. 吉林大学学报(工学版), 2016, 46(1):213-220. HUO X J, LIU Y W, JIANG L, et al. Inverse kinematic optimization of 7R humanoid arm with joint limits[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(1):213-220(in Chinese).
[29] 郭盛, 方跃法, 岳聪. 基于螺旋理论的单闭环多自由度过约束机构综合[J]. 机械工程学报, 2009, 45(11):38-45. GUO S, FANG Y F, YUE C. Structure synthesis of single closed-loop multi-degree of freedom of over-constrained mechanism based on screw theory[J]. Journal of Mechanical Engineering, 2009, 45(11):38-45(in Chinese).
[30] DENG Z Q, HUANG H L, LI B, et al. Synthesis of deployable/foldable single loop mechanisms with revolute Joints[J]. Journal of Mechanisms and Robotics, 2011, 3(3):031006.
[31] 黄真, 赵永生, 赵铁石. 高等空间机构学(第二版)[M]. 北京:高等教育出版社, 2014:86-229. HUANG Z, ZHAO Y S, ZHAO T S. Advanced Spatial Mechanism(Second Edition)[M]. Beijing:Higher Education Press, 2014:86-229(in Chinese).
文章导航

/