[1] 杜善义, 关志东. 我国大型客机先进复合材料技术应对策略思考[J]. 复合材料学报, 2008, 25(1):1-10. DU S Y,GUAN Z D. Strategic considerations for development of advanced composite technology for large commercial aircraft in China[J]. Acta Materiae Compositae Sinica, 2008, 25(1):1-10(in Chinese).
[2] 董慧民, 益小苏, 安学峰. 复合材料热固性聚合物基复合材料层间增韧研究进展[J]. 复合材料学报, 2014, 31(2):273-285. DONG H M, YI X S, AN X F. Development of interleaved fibre-reinforced thermoset polymer matrix composites[J]. Acta Materiae Compositae Sinica, 2014, 31(2):273-285(in Chinese).
[3] 杨乃宾, 章怡宁. 复合材料飞机结构设计[M]. 北京:航空工业出版社, 2002. YANG N B, ZHANG Y N. Structural design of composite aircraft[M]. Beijing:Aviation Industry Press, 2002(in Chinese).
[4] 中国航空研究院. 复合材料飞机结构耐久性/损伤容限设计指南[M]. 北京:航空工业出版社, 1995. Chinese Aeronautical Establishment. Guide for durability/damage tolerance design of composite aircraft structures[M]. Beijing:Aviation Industry Press, 1995(in Chinese).
[5] Federal Aviation Administration. Composite aircraft structures:AC20-107B[S]. Washington, D.C.:Federal Aviation Administration, 2009.
[6] CANTURRI C, GREENHALGH E S, PINHO S T, et al. Delamination growth directionality and the subsequent migration processes-The key to damage tolerant design[J]. Composites Part A:Applied Science and Manufacturing, 2013, 54:79-87.
[7] ISO. Fibre-reinforced plastic composites-determination of mode I interlaminar fracture toughness GIC, for unidirectionally reinforced materials:ISO 15024[S]. Geneva:ISO, 2001.
[8] ASTM International. Standard test method for mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites:ASTM D5528-13[S]. West Conshohocken, PA:ASTM International, 2013.
[9] 中国航空工业总公司. 碳纤维复合材料层合板Ⅰ型层间断裂韧性GIC试验方法:HB 7402-1996[S]. 北京:中国航空工业总公司, 1996. Aviation Industry Corporation of China. Test method for mode I interlaminar fracture toughness GIC of CFRP laminates:HB 7402-1996[S]. Beijing:Aviation Industry Corporation of China, 1996(in Chinese).
[10] HASHEMI S, KINLOCH A J, WILLIAMS J G. Mechanics and mechanisms of delamination in a poly (ether sulphone)-Fibre composite[J]. Composites Science and Technology, 1990, 37(4):429-462.
[11] WILLIAMS J G. End corrections for orthotropic DCB specimens[J]. Composites Science and Technology, 1989, 35(4):367-376.
[12] HASHEMI S, KINLOCH A J, WILLIAMS J G. Corrections needed in double-cantilever beam tests for assessing the interlaminar failure of fibre-composites[J]. Journal of Materials Science Letters, 1989, 8(2):125-129.
[13] PENG L, ZHANG J Y, ZHAO L B, et al. Mode I delamination growth of multidirectional composite laminates under fatigue loading[J]. Journal of Composite Materials, 2011, 45(10):1077-1090.
[14] DAVIES P, CASARI P, CARLSSON L A. Influence of fibre volume fraction on mode Ⅱ interlaminar fracture toughness of glass/epoxy using the 4ENF specimen[J]. Composites Science and Technology, 2005, 65(2):295-300.
[15] BARRETT J D, FOSCHI R O. Mode Ⅱ stress-intensity factors for cracked wood beams[J]. Engineering Fracture Mechanics, 1977, 9(2):371-378.
[16] RUSSELL A J, STREET K N. Factors affecting the interlaminar fracture energy of graphite/epoxy laminates[C]//HAYASHI T, KAWATA K, UMEKAWAS. Progress in Science and Engineering of Composites:Proceedings of the Fourth International Conference on Composite Material, 1982:279-286.
[17] ASTM International. Standard test method for determination of the mode Ⅱ interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites:ASTM D7905/D7905M-14[S]. West Conshohocken, PA:ASTM International, 2014.
[18] Japanese Standards Association. Testing methods for interlaminar fracture toughness of carbon fibre reinforced plastics:JSA K7086[S]. Tokyo:Japanese Standards Association, 1993.
[19] 中国航空工业总公司. 碳纤维复合材料层合板Ⅱ型层间断裂韧性GⅡC试验方法:HB7403-1996[S]. 北京:中国航空工业总公司, 1996. Aviation Industry Corporation of China. Test method for mode Ⅱ interlaminar fracture toughness GⅡC of CFRP laminates:HB7403-1996[S]. Beijing:Aviation Industry Corporation of China, 1996(in Chinese).
[20] TANAKA K, KAGEYAMA K, HOJO M. Prestandardization study on mode Ⅱ interlaminar fracture toughness test for CFRP in Japan[J]. Composites, 1995, 26(4):257-267.
[21] RUSSELL A, STREET K. The effect of matrix toughness on delamination:Static and fatigue fracture under mode Ⅱ shear loading of graphite fiber composites[M]. West Conshohocken, PA:ASTM International, 1987.
[22] MARTIN R H, DAVIDSOM B D. Mode Ⅱ fracture toughness evaluation using a 4-point bend end notched flexure test[C]//4th International Conference on Deformation and Fracture of Composites, 1997.
[23] MARTIN R H, ELMS T, BOWRON S. Characterization of mode Ⅱ delamination using the 4ENF[C]//Fourth European Conference on Composite Materials:Testing and Standardization, 1998.
[24] 李玉龙, 刘会芳. 加载速率对层间断裂韧性的影响[J]. 航空学报, 2015, 36(8):2620-2650. LI Y L, LIU H F. Loading rate effect on interlaminar fracture toughness[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(8):2620-2650(in Chinese).
[25] GUSTAFSON C, HOJO M, HOLM D. A nonlinear analysis of the CLS specimen[J]. Journal of Composite Materials, 1989, 23(2):146-162.
[26] TRACY G D, FERABOLI P, KEDWARD K T. A new mixed mode test for carbon/epoxy composite systems[J]. Composites Part A:Applied Science and Manufacturing, 2003, 34(11):1125-1131.
[27] ARCAN M, HASHIN Z, VOLOSHIN A. A method to produce uniform plane-stress states with applications to fiber-reinforced materials[J]. Experimental Mechanics, 1978, 18(4):141-146.
[28] DA SILVA L F M, ESTEVES V H C, CHAVES F J P. Fracture toughness of a structural adhesive under mixed mode loadings[J]. Materials Science and Engineering Technology, 2011, 42(5):460-470.
[29] CREWS J H, REEDER J R. A mixed-mode bending apparatus for delamination testing:NASA TM-100662[R]. Washington, D.C.:NASA, 1988.
[30] REEDER J R, CREWS J H. Nonlinear analysis and redesign of the mixed-mode bending delamination test[R]. Hampton, VA:NASA Langley Research Center, 1991.
[31] ASTM International. Standard test method for mixed mode I-mode Ⅱ interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites:ASTM D6671/D6671M-13e1[S]. West Conshohocken, PA:ASTM International, 2013.
[32] ZHANG J Y, PENG L, ZHAO L B, et al. Fatigue delamination growth rates and thresholds of composite laminates under mixed mode loading[J]. International Journal of Fatigue, 2012, 40:7-15.
[33] LAKSIMI A, AHMED BENYAHIA A, BENZEGGAGH M L, et al. Initiation and bifurcation mechanisms of cracks in multi-directional laminates[J]. Composites Science and Technology, 2000, 60(4):597-604.
[34] BIN MOHAMED REHAN MS, ROUSSEAU J, FONTAINE S, et al. Experimental study of the influence of ply orientation on DCB mode-I delamination behavior by using multidirectional fully isotropic carbon/epoxy laminates[J]. Composite Structures, 2017, 161:1-7.
[35] DAVIDSON B D, KRUGER R, KOING M. Effect of stacking sequence on energy release rate distributions in multidirectional DCB and ENF specimens[J]. Engineering Fracture Mechanics, 1996, 55(4):557-569.
[36] DAVIDSON B D, SCHAPERY R A. Effect of finite width on deflection and energy release rate of an orthotropic double cantilever specimen[J]. Journal of Composite Materials, 1988, 22(7):640-656.
[37] BRUNNER A J, BLACKMAN B, DAVIES P. A status report on delamination resistance testing of polymer-matrix composites[J]. Engineering Fracture Mechanics, 2008, 75(9):2779-2794.
[38] OZDIL F, CARLSSON L A, DAVIES P. Beam analysis of angle-ply laminate end-notched flexure specimens[J]. Composites Science and Technology, 1998, 58(12):1929-1938.
[39] CHOI N S, KINLOCH A J, WILLIAMS J G. Delamination fracture of multidirectional carbon-fiber/epoxy composites under mode I, mode Ⅱ and mixed-mode I/Ⅱ loading[J]. Journal of Composite Materials, 1999, 33(1):73-100.
[40] PEREIRA A B, DE MORAIS A B, MARQUES A T, et al. Mode Ⅱ interlaminar fracture of carbon/epoxy multidirectional laminates[J]. Composites Science and Technology, 2004, 64(10):1653-1659.
[41] SHI Y B, HULL D, PRICE J N. Mode Ⅱ fracture of +θ/-θ angled laminate interfaces[J]. Composites Science and Technology, 1993, 47(2):173-184.
[42] GONG Y, ZHANG B, HALLETT S R. Delamination migration in multidirectional composite laminates under mode I quasi-static and fatigue loading[J]. Composite Structures, 2018, 189:160-176.
[43] GONG Y, ZHANG B, MUKHOPADHYAY S, et al. Experimental study on delamination migration in multidirectional laminates under mode Ⅱ static and fatigue loading, with comparison to mode I[J]. Composite Structures, 2018, 201:683-698.
[44] BRUNNER A J, BLACKMAN B. Delamination fracture in cross-ply laminates:What can be learned from experiment?[J]. European Structural Integrity Society, 2003, 32:433-444.
[45] PEREIRA A B, DE MORAIS A B. Mode I interlaminar fracture of carbon/epoxy multidirectional laminates[J]. Composites Science and Technology, 2004, 64(13):2261-2270.
[46] ZHAO L B, WANG Y N, ZHANG J Y, et al. An interface-dependent model of plateau fracture toughness in multidirectional CFRP laminates under mode I loading[J]. Composites Part B:Engineering, 2017, 131:196-208.
[47] LAKSIMI A, BENZEGGAGH M L, JING G, et al. Mode I interlaminar fracture of symmetrical cross-ply composites[J]. Composites Science and Technology, 1991, 41(2):147-164.
[48] DE MORAIS A B, DE MOURA M F, MARQUES A T, et al. Mode-I interlaminar fracture of carbon/epoxy cross-ply composites[J]. Composites Science and Technology, 2002, 62(5):679-686.
[49] OZDIL F, CARLSSON L A. Beam analysis of angle-ply laminate DCB specimens[J]. Composites Science and Technology, 1999, 59(2):305-315.
[50] ROBINSON P, SONG D Q. A modified DCB specimen for mode I testing of multidirectional laminates[J]. Journal of Composite Materials, 1992, 26(11):1554-1577.
[51] ROBINSON P, JAVIDRAD F, HITCHINGS D. Finite element modelling of delamination growth in the DCB and edge delaminated DCB specimens[J]. Composite Structures, 1995, 32(1):275-285.
[52] PEREIRA A B, DE MORAIS A B, DE MOURA M, et al. Mode I interlaminar fracture of woven glass/epoxy multidirectional laminates[J]. Composites Part A:Applied Science and Manufacturing, 2005, 36(8):1119-1127.
[53] PEREIRA A B, DE MORAIS A B. Mode Ⅱ interlaminar fracture of glass/epoxy multidirectional laminates[J]. Composites Part A:Applied Science and Manufacturing, 2004, 35(2):265-272.
[54] CHOU I, KIMPARA I, KAGEYAMA K, et al. Mode I and mode Ⅱ fracture toughness measured between differently oriented plies in graphite/epoxy composites[J]. ASTM Special Technical Publication, 1995, 1230:132-151.
[55] OZDIL F, CARLSSON L A. Beam analysis of angle-ply laminate mixed-mode bending specimens[J]. Composites Science and Technology, 1999, 59(6):937-945.
[56] KIM B W, MAYER A H. Influence of fiber direction and mixed-mode ratio on delamination fracture toughness of carbon/epoxy laminates[J]. Composites Science and Technology, 2003, 63(5):695-713.
[57] REHAN M S, ROUSSEAU J, GONG X J, et al. Effects of fiber orientation of adjacent plies on the mode I crack propagation in a carbon-epoxy laminates[J]. Procedia Engineering, 2011, 10:3179-3184.
[58] NEMAT-NASSER S, NI L. A fiber-bridged crack with rate-dependent bridging forces[J]. Journal of the Mechanics and Physics of Solids, 2001, 49(11):2635-2650.
[59] YAO L, ALDERLIESTEN R C, BENEDICTUS R. The effect of fibre bridging on the Paris relation for mode I fatigue delamination growth in composites[J]. Composite Structures, 2016, 140:125-135.
[60] DE MOURA M, CAMPILHO R, AMARO A M, et al. Interlaminar and intralaminar fracture characterization of composites under mode I loading[J]. Composite Structures, 2010, 92(1):144-149.
[61] SHOKRIEH M M, HEIDARI-RARANI M. Effect of stacking sequence on R-curve behavior of glass/epoxy DCB laminates with 0°//0° crack interface[J]. Materials Science and Engineering:A, 2011, 529:265-269.
[62] SPEARING S M, EVANS A G. The role of fiber bridging in the delamination resistance of fiber-reinforced composites[J]. Acta Metallurgica et Materialia, 1992, 40(9):2191-2199.
[63] TAMUZS V, TARASOVS S, VILKS U. Progressive delamination and fiber bridging modeling in double cantilever beam composite specimens[J]. Engineering Fracture Mechanics, 2001, 68(5):513-525.
[64] DAVIES P, SIMS G D, BLACKMAN B, et al. Comparison of test configurations for the determination of GⅡC:Results from an international round robin[J]. Plastics, Rubber and Composites, 1999, 28(9):432-437.
[65] IVENS J, ALBERTSEN H, WEVERS M, et al. Interlaminar fracture toughness of CFRP influenced by fibre surface treatment:Part 2. Modelling of the interface effect[J]. Composites Science and Technology, 1995, 54(2):147-159.
[66] SHOKRIEH M M, ZEINEDINI A, GHOREISHI S M. On the mixed mode I/Ⅱ delamination R-curve of E-glass/epoxy laminated composites[J]. Composite Structures, 2017, 171:19-31.
[67] DáVILA C G, ROSE C A, CAMANHO P P. A procedure for superposing linear cohesive laws to represent multiple damage mechanisms in the fracture of composites[J]. International Journal of Fracture, 2009, 158(2):211-223.
[68] FOOTE R M, MAI Y, COTTERELL B. Crack growth resistance curves in strain-softening materials[J]. Journal of the Mechanics and Physics of Solids, 1986, 34(6):593-607.
[69] COX B N, MARSHALL D B. The determination of crack bridging forces[J]. International Journal of Fracture, 1991, 49(3):159-176.
[70] SUO Z, BAO G, FAN B. Delamination R-curve phenomena due to damage[J]. Journal of the Mechanics and Physics of Solids, 1992, 40(1):1-16.
[71] ZOK F, HOM C L. Large scale bridging in brittle matrix composites[J]. Acta Metallurgica et Materialia, 1990, 38(10):1895-1904.
[72] LINDHAGEN J E, BERGLUND L A. Application of bridging-law concepts to short-fibre composites Part 1:DCB test procedures for bridging law and fracture energy[J]. Composites Science and Technology, 2000, 60(6):871-883.
[73] FERNBERG S P, BERGLUND L A. Bridging law and toughness characterisation of CSM and SMC composites[J]. Composites Science and Technology, 2001, 61(16):2445-2454.
[74] FROSSARD G, CUGNONI J, GMVR T, et al. An efficient method for fiber bridging traction identification based on the R-Curve:Formulation and experimental validation[J]. Composite Structures, 2017, 175:135-144.
[75] MANSHADI B D, FARMAND-ASHTIANI E, BOTSIS J, et al. An iterative analytical/experimental study of bridging in delamination of the double cantilever beam specimen[J]. Composites Part A:Applied Science and Manufacturing, 2014, 61:43-50.
[76] SORENSEN L, BOTSIS J, GMVR T, et al. Delamination detection and characterisation of bridging tractions using long FBG optical sensors[J]. Composites Part A:Applied Science and Manufacturing, 2007, 38(10):2087-2096.
[77] MANSHADI B D, VASSILOPOULOS A P, BOTSIS J. A combined experimental/numerical study of the scaling effects on mode I delamination of GFRP[J]. Composites Science and Technology, 2013, 83:32-39.
[78] STUTZ S, CUGNONI J, BOTSIS J. Studies of mode I delamination in monotonic and fatigue loading using FBG wavelength multiplexing and numerical analysis[J]. Composites Science and Technology, 2011, 71(4):443-449.
[79] FARMAND-ASHTIANI E, ALANIS D, CUGNONI J, et al. Delamination in cross-ply laminates:Identification of traction-separation relations and cohesive zone modeling[J]. Composites Science and Technology, 2015, 119:85-92.
[80] FROSSARD G, CUGNONI J, GMVR T, et al. Mode I interlaminar fracture of carbon epoxy laminates:Effects of ply thickness[J]. Composites Part A:Applied Science and Manufacturing, 2016, 91:1-8.
[81] SHOKRIEH M M, SALAMAT-TALAB M, HEIDARI-RARANI M. Effect of initial crack length on the measured bridging law of unidirectional E-glass/epoxy double cantilever beam specimens[J]. Materials & Design, 2014, 55:605-611.
[82] SØRENSEN L, BOTSIS J, GMVR T, et al. Bridging tractions in mode I delamination:Measurements and simulations[J]. Composites Science and Technology, 2008, 68(12):2350-2358.
[83] SØRENSEN B F, JACOBSEN T K. Large-scale bridging in composites:R-curves and bridging laws[J]. Composites Part A:Applied Science and Manufacturing, 1998, 29(11):1443-1451.
[84] GUTKIN R, LAFFAN M L, PINHO S T, et al. Modelling the R-curve effect and its specimen-dependence[J]. International Journal of Solids and Structures, 2011, 48(11):1767-1777.
[85] SHOKRIEH M M, HEIDARI-RARANI M, AYATOLLAHI M R. Delamination R-curve as a material property of unidirectional glass/epoxy composites[J]. Materials & Design, 2012, 34:211-218.
[86] DUCEPT F, DAVIES P, GAMBY D. An experimental study to validate tests used to determine mixed mode failure criteria of glass/epoxy composites[J]. Composites Part A:Applied Science and Manufacturing, 1997, 28(8):719-729.
[87] LIU Y, ZHANG C, XIANG Y. A critical plane-based fracture criterion for mixed-mode delamination in composite materials[J]. Composites Part B:Engineering, 2015, 82:212-220.
[88] GREENHALGH E, SINGH S. The effect of moisture, matrix and ply orientation on delamination resistance, failure criteria and fracture morphology in CFRP[M]. West Conshohocken, PA:ASTM International, 2002.
[89] ASP L E, SJÖGREN A, GREENHALGH E S. Delamination growth and thresholds in a carbon/epoxy composite under fatigue loading[J]. Journal of Composites, Technology and Research, 2001, 23(2):55-68.
[90] WILLIAMS J G. The fracture mechanics of delamination tests[J]. The Journal of Strain Analysis for Engineering Design, 1989, 24(4):207-214.
[91] HASHEMI S, KINLOCH A, WILLIAMS G. Mixed-mode fracture in fiber-polymer composite laminates[M]. West Conshohocken, PA:ASTM International, 1991.
[92] DAVIDSON B D, ZHAO W. An accurate mixed-mode delamination failure criterion for laminated fibrous composites requiring limited experimental input[J]. Journal of Composite Materials, 2006, 41(6):679-702.
[93] TURON A, CAMANHO P P, COSTA J, et al. A damage model for the simulation of delamination in advanced composites under variable-mode loading[J]. Mechanics of Materials, 2006, 38(11):1072-1089.
[94] GONG Y, ZHAO L, ZHANG J, et al. Delamination propagation criterion including the effect of fiber bridging for mixed-mode I/Ⅱ delamination in CFRP multidirectional laminates[J]. Composites Science and Technology, 2017, 151:302-309.
[95] LEBLANC L R, LAPLANTE G. Experimental investigation and finite element modeling of mixed-mode delamination in a moisture-exposed carbon/epoxy composite[J]. Composites Part A:Applied Science and Manufacturing, 2016, 81:202-213.
[96] MARAT-MENDES R M, FREITAS M M. Failure criteria for mixed mode delamination in glass fibre epoxy composites[J]. Composite Structures, 2010, 92(9):2292-2298.
[97] GONG Y, ZHAO L, ZHANG J, et al. An improved power law criterion for the delamination propagation with the effect of large-scale fiber bridging in composite multidirectional laminates[J]. Composite Structures, 2018, 184:961-968.
[98] WANG A S D, SLOMIANA M, BUCINELL R B. Delamination crack growth in composite laminates[M]. West Conshohocken, PA:ASTM International, 1985.
[99] HOJO M, TANAKA M, GUSTAFSON C, et al. Effect of stress ratio on near-threshold propagation of delamination fatigue cracks in unidirectional CFRP[J]. Composites Science and Technology, 1987, 29(4):273-292.
[100] O'BRIEN K. Generic aspects of delamination in fatigue of composites[J]. Journal of the American Helicopter Society, 1987, 32:13-18.
[101] GUSTAFSON C, HOJO M. Delamination fatigue crack growth in unidirectional graphite/epoxy laminates[J]. Journal of Reinforced Plastics and Composites, 1987, 6(1):36-52.
[102] HOJO M, GUSTAFSON C, TANAKA K, et al. Mode I propagation of delamination fatigue cracks in CFRP[J] Transactions of the Japan Society of Mechanical Engineers, Part A, 1987, 54(499):455-460
[103] WHITCOMB J D. Strain-energy release rate analysis of cyclic delamination growth in compressively loaded laminates[M]. West Conshohocken, PA:ASTM International, 1984.
[104] ROUNDI W, EL MAHI A, EL GHARAD A, et al. Experimental and numerical investigation of the effects of stacking sequence and stress ratio on fatigue damage of glass/epoxy composites[J]. Composites Part B:Engineering, 2017, 109:64-71.
[105] PASCOE J A, ALDERLIESTEN R C, BENEDICTUS R. Methods for the prediction of fatigue delamination growth in composites and adhesive bonds-A critical review[J]. Engineering Fracture Mechanics, 2013, 112:72-96.
[106] HOJO M, ANDO T, TANAKA M, et al. Mode I and Ⅱ interlaminar fracture toughness and fatigue delamination of CF/epoxy laminates with self-same epoxy interleaf[J]. International Journal of Fatigue, 2006, 28(10):1154-1165.
[107] HOJO M, NAKASHIMA K, KUSAKA T, et al. Mode I fatigue delamination of Zanchor-reinforced CF/epoxy laminates[J]. International Journal of Fatigue, 2010, 32(1):37-45.
[108] ALLEGRI G, WISNOM M R, HALLETT S R. A new semi-empirical law for variable stress-ratio and mixed-mode fatigue delamination growth[J]. Composites Part A:Applied Science and Manufacturing, 2013, 48:192-200.
[109] STELZER S, BRUNNER A J, ARGVELLES A, et al. Mode I delamination fatigue crack growth in unidirectional fiber reinforced composites:Results from ESIS TC4 round-robins[J]. Engineering Fracture Mechanics, 2014, 116:92-107.
[110] SHAHVERDI M, VASSILOPOULOS A P, KELLER T. Experimental investigation of R-ratio effects on fatigue crack growth of adhesively-bonded pultruded GFRP DCB joints under CA loading[J]. Composites Part A:Applied Science and Manufacturing, 2012, 43(10):1689-1697.
[111] MOHLIN T, BLOM A F, CARLSSON L A, et al. Delamination growth in a notched graphite/epoxy laminate under compression fatigue loading[M]. West Conshohocken, PA:ASTM International, 1985.
[112] RANS C, ALDERLIESTEN R, BENEDICTUS R. Misinterpreting the results:How similitude can improve our understanding of fatigue delamination growth[J]. Composites Science and Technology, 2011, 71(2):230-238.
[113] HWANG W, HAN K S. Interlaminar fracture behavior and fiber bridging of glass-epoxy composite under mode I static and cyclic loadings[J]. Journal of Composite Materials, 1989, 23(4):396-430.
[114] KHAN R, ALDERLIESTEN R, YAO L, et al. Crack closure and fibre bridging during delamination growth in carbon fibre/epoxy laminates under mode I fatigue loading[J]. Composites Part A:Applied Science and Manufacturing, 2014, 67:201-211.
[115] GREGORY J R, SPEARING S M. A fiber bridging model for fatigue delamination in composite materials[J]. Acta Materialia, 2004, 52(19):5493-5502.
[116] ALLEGRI G, JONES M I, WISNOM M R, et al. A new semi-empirical model for stress ratio effect on mode Ⅱ fatigue delamination growth[J]. Composites Part A:Applied Science and Manufacturing, 2011, 42(7):733-740.
[117] BLANCO N, GAMSTEDT E K, ASP L E, et al. Mixed-mode delamination growth in carbon-fibre composite laminates under cyclic loading[J]. International Journal of Solids and Structures, 2004, 41(15):4219-4235.
[118] WANG A, SLOMIANA M, BUCINELL R B. Delamination crack growth in composite laminates[M]. West Conshohocken, PA:ASTM International, 1985.
[119] RAMKUMAR R L, WHITCOMB J D. Characterization of mode I and mixed-mode delamination growth in T300/5208 graphite/epoxy[J]. Delamination and Debonding of Materials, 1985, 876(985):315-335.
[120] RUSSELL A J, STREET K N. Predicting interlaminar fatigue crack growth rates in compressively loaded laminates[J]. Composite Materials:Fatigue and Fracture, 1989, 1012:162-178.
[121] ALLEGRI G, WISNOM M R. A non-linear damage evolution model for mode Ⅱ fatigue delamination onset and growth[J]. International Journal of Fatigue, 2012, 43:226-234.
[122] POURSARTIP A. The characterization of edge delamination growth in laminates under fatigue loading[M]. West Conshohocken, PA:ASTM International, 1985.
[123] SHIVAKUMAR K, CHEN H, ABALI F, et al. A total fatigue life model for mode I delaminated composite laminates[J]. International Journal of Fatigue, 2006, 28(1):33-42.
[124] CHEN H, SHIVAKUMAR K, ABALI F. A comparison of total fatigue life models for composite laminates[J]. Fatigue & Fracture of Engineering Materials & Structures, 2006, 29(1):31-39.
[125] MURRI G B. Evaluation of delamination growth characterization methods under mode I fatigue loading[C]//15th US-Japan Conference on Composites, 2012.
[126] KRUZIC J J, CANNON R M, Ⅲ J W A, et al. Fatigue threshold R-curves for predicting reliability of ceramics under cyclic loading[J]. Acta Materialia, 2005, 53:2595-2605.
[127] YAO L, ALDERLIESTEN R C, ZHAO M, et al. Discussion on the use of the strain energy release rate for fatigue delamination characterization[J]. Composites Part A:Applied Science and Manufacturing, 2014, 66:65-72.
[128] YAO L, ALDERLIESTEN R, ZHAO M, et al. Bridging effect on mode I fatigue delamination behavior in composite laminates[J]. Composites Part A:Applied Science and Manufacturing, 2014, 63:103-109.
[129] PENG L, XU J, ZHANG J, et al. Mixed mode delamination growth of multidirectional composite laminates under fatigue loading[J]. Engineering Fracture Mechanics, 2012, 96:676-686.
[130] ZHAO L B, GONG Y, ZHANG J Y, et al. A novel interpretation of fatigue delamination growth behavior in CFRP multidirectional laminates[J]. Composites Science and Technology, 2016, 133:79-88.
[131] GONG Y, ZHAO L B, ZHANG J Y, et al. A novel model for determining the fatigue delamination resistance in composite laminates from a viewpoint of energy[J]. Composites Science and Technology, 2018, 167:489-496.
[132] BRUSSAT T R, CHIU S T, MOSTOVOY S. Fracture mechanics for structural adhesive bonds:LR-28196[R]. Montgomery County, MD:Lockheed Coperation, 1977.
[133] KARDOMATEAS G A, PELEGRI A A, MALIK B. Growth of internal delaminations under cyclic compression in composite plates[J]. Journal of the Mechanics and Physics of Solids, 1995, 43(6):847-868.
[134] KENANE M, BENZEGGAGH M L. Mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites under fatigue loading[J]. Composites Science and Technology, 1997, 57(5):597-605.
[135] ELBERT W. The significance of fatigue crack closure[C]//Seventy-third Annual Meeting American Society for Testing and Materials. West Conshohocken, PA:ASTM International, 1971.
[136] JABLONSKI D A. Fatigue crack growth in structural adhesives[J]. The Journal of Adhesion, 1980, 11(2):125-143.
[137] FAWAZ S A. Application of the virtual crack closure technique to calculate stress intensity factors for through cracks with an elliptical crack front[J]. Engineering Fracture Mechanics, 1998, 59(3):327-342.
[138] XIE D, BIGGERS JR S B. Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique. Part I:Formulation and validation[J]. Engineering Fracture Mechanics, 2006, 73(6):771-785.
[139] XIE D, BIGGERS JR S B. Progressive crack growth analysis using interface element based on the virtual crack closure technique[J]. Finite Elements in Analysis and Design, 2006, 42(11):977-984.
[140] KRUEGER R. Virtual crack closure technique:History, approach, and applications[J]. Applied Mechanics Reviews, 2004, 57(2):109-143.
[141] LI H C H, DHARMAWAN F, HERSZBERG I, et al. Fracture behaviour of composite maritime T-joints[J]. Composite Structures, 2006, 75(1):339-350.
[142] 孟令兵, 陈普会. 层压复合材料分层扩展分析的虚拟裂纹闭合技术及其应用[J]. 复合材料学报, 2010, 27(1):190-195. MENG L B. CHEN P H. Virtual crack closure technique for delamination growth analysis of laminated composites and its application[J]. Acta Materiae Compositae Sinica, 2010, 27(1):190-195(in Chinese).
[143] 肖涛, 左正兴. 虚拟裂纹闭合法在结构断裂分析中的应用[J]. 计算力学学报, 2008, 25:16-19. XIAO T, ZUO Z X. Application of virtual crack closure technique in structure fracture analysis[J]. Chinese Journal of Computational Mechanics, 2008, 25:16-19(in Chinese).
[144] MARJANOVIĆ M, MESCHKE G, VUKSANOVIĆ D. A finite element model for propagating delamination in laminated composite plates based on the virtual crack closure method[J]. Composite Structures, 2016, 150:8-19.
[145] 赵丽滨, 徐吉峰. 先进复合材料连接结构分析方法[M]. 北京:北京航空航天大学出版社, 2015. ZHAO L B, XU J F. Analysis method for connecting structure of advanced composite materials[M]. Beijing:Beihang University Press, 2015(in Chinese).
[146] XU X P, NEEDLEMAN A. Void nucleation by inclusion debonding in a crystal matrix[J]. Modelling and Simulation in Materials Science and Engineering, 1993, 1(2):111-132.
[147] TVERGAARD V, HUTCHINSON J W. The relation between crack growth resistance and fracture process parameters in elastic-plastic solids[J]. Journal of the Mechanics and Physics of Solids, 1992, 40(6):1377-1397.
[148] CAMANHO P P, DAVILA C G, DE MOURA M F. Numerical simulation of mixed-mode progressive delamination in composite materials[J]. Journal of Composite Materials, 2003, 37(16):1415-1438.
[149] REEDY E D, MELLO F J, GUESS T R. Modeling the initiation and growth of delaminations in composite structures[J]. Journal of Composite Materials, 1997, 31(8):812-831.
[150] TURON A, VILA C G D, CAMANHO P P, et al. An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models[J]. Engineering Fracture Mechanics, 2007, 74:1665-1682.
[151] ZOU Z, REID S R, LI S, et al. Modelling interlaminar and intralaminar damage in filament-wound pipes under quasi-static indentation[J]. Journal of Composite Materials, 2002, 36(4):477-499.
[152] HILLERBORG A, MODEER M, PETERSSON P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6):773-781.
[153] DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of Mechanics and Physics of Solids, 1960, 8(2):100-104.
[154] BARENBLATT G. The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962, 7:55-129.
[155] RICE J R. The mechanics of earthquake rupture[D]. Providence:Brown University, 1979.
[156] FALK M L, NEEDLEMAN A, RICE J R. A critical evaluation of cohesive zone models of dynamic fracture[C]//5th European Mechanics of Materials Conference, 2001.
[157] HUI C, JAGOTA A, BENNISON S, et al. Crack blunting and the strength of soft elastic solids[J]. Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 2003, 459:1489-1516.
[158] IRWIN G R. Plastic zone near a crack and fracture toughness[D]. New York:Syracuse University, 1960.
[159] NEKKANTY S, WALTER M E, SHIVPURI R. A cohesive zone finite element approach to model tensile cracks in thin film coatings[J]. Journal of Mechanics of Materials & Structures, 2007, 2(7):1231-1247.
[160] ALFANO G, CRISFIELD M A. Solution strategies for the delamination analysis based on a combination of local-control arc-length and line searches[J]. International Journal for Numerical Methods in Engineering, 2003, 58(7):999-1048.
[161] LIU P F, ZHENG J Y. Recent developments on damage modeling and finite element analysis for composite laminates:A review[J]. Materials & Design, 2010, 31(8):3825-3834.
[162] HAMITOUCHE L, TARFAOUI M, VAUTRIN A. An interface debonding law subject to viscous regularization for avoiding instability:Application to the delamination problems[J]. Engineering Fracture Mechanics, 2008, 75(10):3084-3100.
[163] SIMONOVSKI I, CIZELJ L. Cohesive element approach to grain level modelling of intergranular cracking[J]. Engineering Fracture Mechanics, 2013, 110:364-377.
[164] PEZZOTTA M, ZHANG Z L. Effect of thermal mismatch induced residual stresses on grain boundary microcracking of titanium diboride ceramics[J]. Journal of Materials Science, 2010, 45(2):382-391.
[165] RANATUNGA V. Finite element modeling of delamination crack propagation in laminated composites[C]//Wor-ld Congress on Engineering, 2011.
[166] CHEN J, RAVEY E, HALLETT S, et al. Prediction of delamination in braided composite T-piece specimens[J]. Composites Science and Technology, 2009, 69(14):2363-2367.
[167] KRUEGER R. Development of benchmark examples for delamination onset and fatigue growth prediction[C]//the NAFEMS World Congress, 2011.
[168] JIANG H, GAO X, SRIVATSAN T S. Predicting the influence of overload and loading mode on fatigue crack growth:A numerical approach using irreversible cohesive elements[J]. Finite Elements in Analysis and Design, 2009, 45(10):675-685.
[169] WILLIAMSON R L, KNOLL D A. Simulating dynamic fracture in oxide fuel pellets using cohesive zone models[C]//20th International Conference on Structural Mech-anics in Reactor Technology, 2009.
[170] TURON A, CAMANHO P P, COSTA J, et al. An interface damage model for the simulation of delamination under variable-mode ratio in composite materials:NASA/TM-2004-213277[R]. Washington, D.C.:NASA, 2004.
[171] YE Q, CHEN P. Prediction of the cohesive strength for numerically simulating composite delamination via CZM-based FEM[J]. Composites Part B:Engineering, 2011, 42(5):1076-1083.
[172] BORG R, NILSSON L, SIMONSSON K. Simulating DCB, ENF and MMB experiments using shell elements and a cohesive zone model[J]. Composites Science and Technology, 2004, 64(2):269-278.
[173] BORG R, NILSSON L, SIMONSSON K. Modeling of delamination using a discretized cohesive zone and damage formulation[J]. Composites Science and Technology, 2002, 62(10):1299-1314.
[174] BORG R, NILSSON L, SIMONSSON K. Simulation of low velocity impact on fiber laminates using a cohesive zone based delamination model[J]. Composites Science and Technology, 2004, 64(2):279-288.
[175] YANG Q, COX B. Cohesive models for damage evolution in laminated composites[J]. International Journal of Fracture, 2005, 133(2):107-137.
[176] DáVILA C G, CAMANHO P P, TURON TRAVESA A. Cohesive elements for shells:NASA/TP-2007-214869[R]. Washington, D.C.:NASA, 2007.
[177] CAMANHO P P, DAVILA C G, AMBUR D R. Numerical simulation of delamination growth in composite materials:NASA/TP-2001-211041[R]. Washington, D.C.:NASA, 2001.
[178] SCHÖN J, NYMAN T, BLOM A, et al. A numerical and experimental investigation of delamination behaviour in the DCB specimen[J]. Composites Science and Technology, 2000, 60(2):173-184.
[179] NAGHIPOUR P, BARTSCH M, CHERNOVA L, et al. Effect of fiber angle orientation and stacking sequence on mixed mode fracture toughness of carbon fiber reinforced plastics:Numerical and experimental investigations[J]. Materials Science and Engineering:A, 2010, 527(3):509-517.
[180] 林国伟, 陈普会. 胶接修补复合材料层合板失效分析的PDA-CZM方法[J]. 航空学报, 2009, 30(10):1877-1882. LIN G W, CHEN P H. PDA-CZM method for failure analysis of bonded repair of composite laminates[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(10):1877-1882(in Chinese).
[181] WU H, XIAO J, XING S, et al. Numerical and experimental investigation into failure of T700/bismaleimide composite T-joints under tensile loading[J]. Composite Structures, 2015, 130:63-74.
[182] ZHAO L B, GONG Y, QIN T L, et al. Failure prediction of out-of-plane woven composite joints using cohesive element[J]. Composite Structures, 2013, 106:407-416.
[183] AYMERICH F, DORE F, PRIOLO P. Prediction of impact-induced delamination in cross-ply composite laminates using cohesive interface elements[J]. Composites Science and Technology, 2008, 68(12):2383-2390.
[184] SUN X C, HALLETT S R. Failure mechanisms and damage evolution of laminated composites under Compression After Impact (CAI):Experimental and numerical study[J]. Composites Part A:Applied Science and Manufacturing, 2018, 104(Supplement C):41-59.
[185] WANG K, ZHAO L, HONG H, et al. A strain-rate-dependent damage model for evaluating the low velocity impact induced damage of composite laminates[J]. Composite Structures, 2018, 201:995-1003.
[186] DE MOURA M F S F, MORAIS J J L, DOURADO N. A new data reduction scheme for mode I wood fracture characterization using the double cantilever beam test[J]. Engineering Fracture Mechanics, 2008, 75(13):3852-3865.
[187] SZEKRéNYES A, UJ J. Advanced beam model for fiber-bridging in unidirectional composite double-cantilever beam specimens[J]. Engineering Fracture Mechanics, 2005, 72(17):2686-2702.
[188] AIROLDI A, DáVILA C G. Identification of material parameters for modelling delamination in the presence of fibre bridging[J]. Composite Structures, 2012, 94(11):3240-3249.
[189] SØRENSEN B F, GOUTIANOS S, JACOBSEN T K. Strength scaling of adhesive joints in polymer-matrix composites[J]. International Journal of Solids and Structures, 2009, 46(3):741-761.
[190] BARSOUM R S. On the use of isoparametric finite elements in linear fracture mechanics[J]. International Journal for Numerical Methods in Engineering, 1976, 10(1):25-37.
[191] ASHARI S E, MOHAMMADI S. Delamination analysis of composites by new orthotropic bimaterial extended finite element method[J]. International Journal for Numerical Methods in Engineering, 2011, 86(13):1507-1543.
[192] ESNA ASHARI S, MOHAMMADI S. Fracture analysis of FRP-reinforced beams by orthotropic XFEM[J]. Journal of Composite Materials, 2012, 46(11):1367-1389.
[193] BOUHALA L, MAKRADI A, BELOUETTAR S, et al. Modelling of failure in long fibres reinforced composites by X-FEM and cohesive zone model[J]. Composites Part B:Engineering, 2013, 55:352-361.
[194] WELLS G N, SLUYS L J. A new method for modelling cohesive cracks using finite elements[J]. International Journal for Numerical Methods in Engineering, 2001, 50(12):2667-2682.
[195] WELLS G N, DE BORST R, SLUYS L J. A consistent geometrically non-linear approach for delamination[J]. International Journal for Numerical Methods in Engineering, 2002, 54(9):1333-1355.
[196] HUYNH D, BELYTSCHKO T. The extended finite element method for fracture in composite materials[J]. International Journal for Numerical Methods in Engineering, 2009, 77(2):214-239.
[197] SUKUMAR N, HUANG Z Y, PRЁVOST J H, et al. Partition of unity enrichment for bimaterial interface cracks[J]. International Journal for Numerical Methods in Engineering, 2004, 59(8):1075-1102.
[198] REMMERS J J, WELLS G N, BORST R D. A solid-like shell element allowing for arbitrary delaminations[J]. International Journal for Numerical Methods in Engineering, 2003, 58(13):2013-2040.
[199] SAMIMI M, VAN DOMMELEN J, GEERS M. An enriched cohesive zone model for delamination in brittle interfaces[J]. International Journal for Numerical Methods in Engineering, 2009, 80(5):609-630.
[200] GUIAMATSIA I, ANKERSEN J K, DAVIES G, et al. Decohesion finite element with enriched basis functions for delamination[J]. Composites Science and Technology, 2009, 69(15-16):2616-2624.
[201] VAN DER MEER F P, MOЁS N, SLUYS L J. A level set model for delamination-Modeling crack growth without cohesive zone or stress singularity[J]. Engineering Fracture Mechanics, 2012, 79:191-212.
[202] AFSHAR A, DANESHYAR A, MOHAMMADI S. XFEM analysis of fiber bridging in mixed-mode crack propagation in composites[J]. Composite Structures, 2015, 125:314-327.
[203] YAZDANI S, RUST W J H, WRIGGERS P. An XFEM approach for modelling delamination in composite laminates[J]. Composite Structures, 2016, 135:353-364.
[204] ZHAO L B, ZHI J, ZHANG J Y, et al. XFEM simulation of delamination in composite laminates[J]. Composites Part A:Applied Science and Manufacturing, 2016, 80:61-71.
[205] ZHAO L B, WANG Y N, ZHANG J Y, et al. XFEM-based model for simulating zigzag delamination growth in laminated composites under mode I loading[J]. Composite Structures, 2017, 160:1155-1162.
[206] GROGAN D M, BRÁDAIGH C Í, LEEN S B. A combined XFEM and cohesive zone model for composite laminate microcracking and permeability[J]. Composite Structures, 2015, 120:246-261.
[207] GROGAN D M, Í BRÁDAIGH C M, MCGARRY J P, et al. Damage and permeability in tape-laid thermoplastic composite cryogenic tanks[J]. Composites Part A:Applied Science and Manufacturing, 2015, 78:390-402.
[208] SONG J H, AREIAS P, BELYTSCHKO T. A method for dynamic crack and shear band propagation with phantom nodes[J]. International Journal for Numerical Methods in Engineering, 2006, 67(6):868-893.
[209] REMMERS J J C, DE BORST R, NEEDLEMAN A. The simulation of dynamic crack propagation using the cohesive segments method[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(1):70-92.