机体/发动机干扰问题是现代大型客机设计中必须考虑和解决的核心问题之一。长期以来,商用和in-house计算流体力学(CFD)软件,都是通过在发动机进气口设置质量流量比,排气口和外涵道设置总温比/总压比,建立动力特性模型来等效模拟机体/发动机干扰流场。在现有动力特性模型基础上,借鉴特征边界思想,将外涵道指定为特征边界,建立了一种新的发动机动力特性模型。采用轴对称超高涵道比涡扇发动机模型、轴对称涡轮动力模型以及某型客机带发动机模型对两种动力特性模型进行了系统的验证和确认,结果表明:两种发动机动力特性模型均能很好地模拟涡扇发动机动力效应,且计算结果与试验数据吻合较好,说明了两种动力特性模型的正确性、可靠性以及工程适用性。此外,所建立的新动力特性模型特别适合于大涵道比涡扇发动机的动力效应模拟,且可以在外涵道总温比、总压比等参数未知的情形下,评估发动机的动力特性,在实际工程中应用更广泛。
Interaction problem between the airframe and the propulsion system of a modern large civil aircraft is one of the key points that is extremely important and must be carefully dealt with in the process of aerodynamic design. For a long time, commercial and in-house Computational Fluid Dynamics (CFD) solvers construct aerodynamic models to simulate the interference flow field of turbofan engine, by setting up the total pressure ratio and the total temperature ratio at exhaust plane and the mass flow ratio at inlet.Based on the current aerodynamic model and the idea of designating the external duct as the characteristic boundary, we present a new approach of modeling turbofan engine with power. Verification and validation are conducted by simulating the flow field around an axisymmetric ultra-high bypass ratio turbofan simulator, a turbine powered simulator and a typical civil aircraft with turbofan engine.The solutions show that, the traditional and the new model have both simulated the propulsion effects of turbofan engine with power properly, and the surface pressure coefficient distributions coincide well with the experiment data, illustrating the correctness, reliability and engineering applicability of both models. Moreover, our newly presented model is much more suitable for high bypass ratio turbofan engine and the evaluation of dynamic characteristics with unknown total pressure ratio and total temperature ratio at bypass. Hence, the new model has wider engineering application compared to traditional models.
[1] OBERT E. Aerodynamic design of transport aircraft[M]. Amsterdam:IOS Press, 2009:149.
[2] 张淼, 刘铁军, 马涂亮, 等. 基于CFD方法的大型客机高速气动设计[J]. 航空学报, 2016, 37(1):244-254. ZHANG M, LIU T J, MA T L, et al. High speed aerodynamic design of large civil transporter based on CFD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):244-254(in Chinese).
[3] 罗金玲, 李超, 徐锦. 高超声速飞行器机体/推进一体化设计的启示[J]. 航空学报, 2015, 36(1):39-48. LUO J L, LI C, XU J. Inspiration of hypersonic vehicle with airframe/propulsion integrated design[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(1):39-48(in Chinese).
[4] HENDERSON W P, PATTERSON J C. Propulsion installation characteristics of turbofan transports:AIAA-1983-0087[R]. Reston, VA:AIAA, 1983.
[5] 周铸, 黄江涛, 黄勇, 等. CFD技术在航空工程领域的应用、挑战与发展[J]. 航空学报, 2017, 38(3):020891. ZHOU Z, HUANG J T, HUANG Y, et al. CFD technology in aeronautic engineering field:Applications, challenges and development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):020891(in Chinese).
[6] HIROSE N, ASAI K, IKAWA K. 3-D Euler flow analysis of fanjet engine and turbine powered simulator with experimental comparison in transonic speed:AIAA-1989-1835[R]. Reston, VA:AIAA, 1989.
[7] DEESE J E, AGARWAL R K. Calculation of axisymmetric inlet flowfield using the Euler equations:AIAA-1983-1853[R]. Reston, VA:AIAA, 1983.
[8] 张美红, 王志栋. CFD技术在带动力飞机气动设计中的应用[J]. 民用飞机设计与研究, 2004(4):52-55. ZHANG M H, WANG Z D. The application of CFD in powered aircraft aerodynamic design[J]. Civil Aircraft Design and Research, 2004(4):52-55(in Chinese).
[9] 谭兆光, 陈迎春, 李杰, 等. 机体/动力装置一体化分析中的动力影响效应数值模拟[J]. 航空动力学报, 2009, 24(8):1766-1772. TAN Z G, CHEN Y C, LI J, et al. Numerical simulation method for the powered effects in airframe/propulsion integration analysis[J]. Journal of Aerospace Power, 2009, 24(8):1766-1772(in Chinese).
[10] 郝海兵, 李蔷薇, 梁益华, 等. 涡扇发动机带动力数值模拟[J]. 航空计算技术, 2013, 43(3):13-17. HAO H B, LI Q W, LIANG Y H, et al. Numerical simulation of turbofan engine with power[J]. Aeronautical Computing Technique, 2013, 43(3):13-17(in Chinese).
[11] 刘李涛, 杨永, 李喜乐. 外吹式动力吹气襟翼N-S方程数值模拟分析[J]. 航空计算技术, 2008, 38(3):61-64. LIU L T, YANG Y, LI X L. Numerical analysis of high-lift system with externally blown flap using N-S equations[J]. Aeronautical Computing Technique, 2008, 38(3):61-64(in Chinese).
[12] 谭伟伟, 颜洪, 郝海兵. 一种新的涡扇发动机动力特性计算模型[J]. 航空计算技术, 2016, 46(6):60-63. TAN W W, YAN H, HAO H B. A new simulation model of turbofan engine with power[J]. Aeronautical Computing Technique, 2016, 46(6):60-63(in Chinese).
[13] 谭伟伟. 混合网格Navier-Stokes方程并行计算软件开发与应用研究[D]. 西安:航空工业西安航空计算技术研究所, 2011:23-26. TAN W W. Development and application of hybrid grid based parallel Navier-Stokes solver[D]. Xi'an:Aeronautics Computing Technique Research Institute of AVIC, 2010:23-26(in Chinese).
[14] BARTH T J. A 3-D upwind Euler solver for unstructured meshes:AIAA-1991-1548[R]. Reston, VA:AIAA, 1991.
[15] BARTH T J. Aspects of unstructured grids and finite-volume solvers for the Euler and Navier-Stokes equations:AGARD Report 787[R]. Brussels:NATO, 1991.
[16] BARTH T J, JESPERSEN D J. The design and application of upwind schemes on unstructured meshes:AIAA-1989-0366[R], Reston, VA:AIAA, 1989.
[17] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows[J]. Recherche Aerospatiale, 1994, 1(1):5-21.
[18] REINHARD K, HEINZ H. Design of axis-asymmetric nacelle for the counter rotating ultra-high-bypass fan simulator:DLR FB-93-52[R]. Cologne:DLR, 1993.
[19] 陈云永, 杨小贺, 卫飞飞. 大涵道比风扇设计技术发展趋势[J]. 航空学报, 2017, 38(9):520953. CHEN Y Y, YANG X H, WEI F F. Development trend of high bypass ratio turbofans design technology[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):520953(in Chinese).
[20] HIROSE N, ASAI K, IKAWA K. Transonic 3-D Euler analysis of flows around fan-jet engine and turbine powered simulator:NAL TR-1045[R]. 1989.