固体力学与飞行器总体设计

计及弹射滑车质量的某舰载无人机弹射动态响应分析

  • 房兴波 ,
  • 聂宏 ,
  • 张钊 ,
  • 魏小辉 ,
  • 张明
展开
  • 1. 南京航空航天大学 飞行器先进设计技术国防重点学科实验室, 南京 210016;
    2. 南京航空航天大学 机械结构力学及控制国家重点实验室, 南京 210016

收稿日期: 2018-04-23

  修回日期: 2018-07-09

  网络出版日期: 2018-10-10

基金资助

国家自然科学基金(11372129);机械结构力学及控制国家重点实验室(南京航空航天大学)自主研究课题(MCMS-0217G01);中央高校基本科研业务费专项资金(NP2017401)

Dynamic response analysis on carrier-based UAV considering catapult shuttle mass

  • FANG Xingbo ,
  • NIE Hong ,
  • ZHANG Zhao ,
  • WEI Xiaohui ,
  • ZHANG Ming
Expand
  • 1. Key Laboratory of Fundamental Science for National Defense-Advanced Design Technology of Flight Vehicle, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Received date: 2018-04-23

  Revised date: 2018-07-09

  Online published: 2018-10-10

Supported by

National Natural Science Foundation of China (11372129); The Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (Nanjing University of Aeronautics and Astronautics) (MCMS-0271G01); The Fundamental Research Funds for the Central Universities (NP2017401)

摘要

舰载无人机是未来海上作战的关键装备,其弹射动态性能严重影响起飞安全。弹射滑车与舰载机起落架弹射杆相连,在牵制杆突卸弹射滑跑过程中共同组成一个耦合动力学系统。目前,国内外尚缺乏对此耦合系统动力学特性的研究。以由某无人机改造的弹射型为研究对象,建立了包含弹射滑车质量的弹射动力学模型,并开展了拖拽弹射过程的动态响应分析,结果表明:弹射滑车的惯性力会沿着弹射杆传递到前起落架上,拖拽弹射过程中前起落架载荷波动幅度增大,前起落架撑杆、弹射杆以及前轮垂向载荷峰值分别增加了23.4%、21.6%和14.0%;前起落架缓冲器压缩量变化范围扩大了30.4%;前起落架纵向和垂向的载荷振荡频率分别从90.9 Hz和5.2 Hz降到26.3 Hz和4.4 Hz。

本文引用格式

房兴波 , 聂宏 , 张钊 , 魏小辉 , 张明 . 计及弹射滑车质量的某舰载无人机弹射动态响应分析[J]. 航空学报, 2018 , 39(12) : 222237 -222237 . DOI: 10.7527/S1000-6893.2018.22237

Abstract

Carrier-based UAV is a key asset in the future marine warfare, and its catapult dynamic performance plays an essential role in takeoff security. The catapult shuttle connects to the landing gear, forming a coupled dynamic system together during the catapult progress. At present, the research on such a coupled dynamic system is rare both at home and abroad. Taking a catapulting type of UAV as the research subject, a catapult dynamic system including shuttle mass has been constructed, and the dynamic response after sudden discharge of the holdback load has been analyzed. Results denote that inertia force of catapult shuttle is exerted on the nose landing gear along the catapult link. The nose landing gear load massively fluctuates during catapult dragging. Vertical load of nose landing gear strut, catapult link and nose wheel increase by 23.4%, 21.6%, and 14.0%, respectively. The range of the nose landing gear stroke increases by 30.4%. Moreover, the fluctuation frequency of the longitudinal and vertical loads of the nose landing gear decreases from 90.9 Hz and 5.2 Hz to 26.3 Hz and 4.4 Hz.

参考文献

[1] SMALL D B. Full scale tests of nose tow catapulting:AIAA-1964-327[R]. Reston, VA:AIAA, 1964.
[2] LUCAS C. Catapult criteria for a carrier-based aircraft:AD702814[R]. 1968.
[3] RAMSEY J, DIXON W. Carrier suitability tests of the model A-6a aircraft[R]. Patuxent River, MD:Naval Air Test Center, 1967.
[4] Department of the Navy. Launching system, nose gear type, aircraft:MIL-L-22589D(AS)[S]. Lakehurst, NJ:Naval Air Engineering Center, 1979.
[5] Department of the Navy. Tension bar/release element, aircraft launching:MIL-T-23426D[S]. Lakehurst, NJ:Naval Air Engineering Center, 1986.
[6] Department of the Navy. Bar, repeatable release holdback, aircraft launching, general design requirements for:MIL-B-85110(AS)[S]. Lakehurst, NJ:Naval Air Engineering Center, 1997.
[7] Department of the Navy. Airplane strength and rigidity ground loads for navy acquired airplanes:MIL-A-8863C(AS)[S]. Lakehurst, NJ:Naval Air Engineering Center, 1993.
[8] WANG W, QU X, GUO L. Multi-agent based hierarchy simulation models of carrier-based aircraft catapult launch[J]. Chinese Journal of Aeronautics, 2008, 21(3):223-231.
[9] 车竞, 和争春. 舰载机弹射起飞的动力学建模与相关问题研究[J]. 飞行力学, 2014, 32(6):485-488. CHE J, HE Z C. Research on dynamic modeling and correlative problems of catapult launch for carrier-based airplane[J]. Flight Dynamics, 2014, 32(6):485-488(in Chinese).
[10] 黎伟明, 马晓利. 舰载机多体动力学建模与弹射起飞模拟[J]. 机械科学与技术, 2016, 35(11):1797-1804. LI W M, MA X L. Multi-body dynamics modeling and catapult-launching simulation for carrier-based aircraft[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(11):1797-1804(in Chinese).
[11] 张雷, 冯蕴雯, 薛小锋, 等. 舰载机蒸汽弹射动力学仿真分析[J]. 航空计算技术, 2012, 42(6):29-33. ZHANG L, FENG Y W, XUE X F, et al. Dynamics simulation of carrier-based aircraft steam catapult[J]. Aeronautical Computing Technique, 2012, 42(6):29-33(in Chinese).
[12] 魏小辉, 刘成龙, 聂宏. 舰载机前起落架突伸动力学分析及试验方法[J]. 航空学报, 2013, 34(6):1363-1369. WEI X H, LIU C L, NIE H. Dynamics and test method of carrier-based aircraft nose landing gear sudden extension[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(6):1363-1369(in Chinese).
[13] 刘冲冲, 崔荣耀. 舰载机前起落架突伸性能分析与验证[J]. 机械科学与技术, 2016, 35(11):1686-1690. LIU C C, CUI R Y. Analysis and test for extension performance of nose landing gear of carrier-based aircraft[J]. Mechanical Science and Technology for Aerospace Engineering, 2016, 35(11):1686-1690(in Chinese).
[14] 于浩, 聂宏, 魏小辉. 舰载机弹射起飞前起落架牵制载荷突卸动力学分析[J]. 航空学报, 2011, 32(8):1435-1444. YU H, NIE H, WEI X H. Analysis on the dynamic characteristics of carrier-based aircraft nose landing gear with sudden holdback load discharge[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(8):1435-1444(in Chinese).
[15] 魏小辉, 贲亮亮, 聂宏, 等. 舰载机变长度减振牵制装置动力学分析[J]. 南京航空航天大学学报, 2013, 45(1):1-7. WEI X H, BENG L L, NIE H, et al. Analysis on anti-vibration holdback device of carrier-based aircraft[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2013, 45(1):1-7(in Chinese).
[16] 何敏, 朱小龙, 刘晓明, 等. 舰载机前机身结构地面弹射冲击响应[J]. 航空学报, 2018, 39(5):221711. HE M, ZHU X L, LIU X M, et al. Impact response of ground ejection of front fuselage structure of carrier-based aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):221711(in Chinese).
文章导航

/