[1] SLOTNICK J, KHODADOUST A, ALONSO J, et al. CFD vision 2030 study:A path to revolutionary computational aerosciences:NASA/CR-2014-218178[R]. Washington, D.C.:NASA, 2014.
[2] 张淼, 刘铁军, 马涂亮, 等. 基于CFD方法的大型客机高速气动设计[J]. 航空学报, 2016, 37(1):244-254. ZHANG M, LIU T J, MA T L, et al. High speed aerodynamic design of large civil transporter based on CFD method[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(1):244-254(in Chinese).
[3] 周铸, 黄江涛, 黄勇, 等. CFD技术在航空工程领域的应用、挑战与发展[J]. 航空学报, 2017, 38(3):020891. ZHOU Z, HUANG J T, HUANG Y, et al. CFD technology in aeronautic engineering field:Applications, challenges and development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3):020891(in Chinese).
[4] 白鹏, 马汉东, 周伟江. CFD在大飞机设计中的工程化应用[C]//中国航空学会2007年学术年会论文集. 北京:中国航空学会, 2007:1-6. BAI P, MA H D, ZHOU W J. Engineering application of CFD in large-scale aircraft design[C]//CSAA Annual Meeting in 2007. Beijing:CSAA, 2007:1-6(in Chinese).
[5] VAN DAM C P. The aerodynamic design of multi-element high-lift systems for transport airplane[J]. Progress in Aerospace Sciences, 2002, 38:101-114.
[6] 张宇飞, 陈海昕, 符松, 等. 一种实用的运输类飞机机翼/发动机短舱一体化优化设计方法[J]. 航空学报, 2012, 33(11):1993-2001. ZHANG Y F, CHEN H X, FU, S, et al. A practical optimization design method for transport aircraft wing/nacelle integration[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11):1993-2001(in Chinese).
[7] ANTUNES A P, AZEVEDO J L F. Studies in aerodynamic optimization based on genetic algorithms[J]. Journal of Aircraft, 2014, 51(3):1002-1012.
[8] SHAN S, WANG G G. Survey of modeling and optimization strategies to solve high-dimensional design problems with computationally-expensive black-box functions[J]. Structural and Multidisciplinary Optimization, 2010, 41(2):219-241.
[9] 李立, 白俊强, 郭同彪, 等. 考虑放宽静稳定度的民机客机气动优化设计[J]. 航空学报, 2017, 38(9):121112. LI L, BAI J Q, GUO T B, et al. Aerodynamic optimization design of the civil aircraft considering relaxed static stability[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(9):121112(in Chinese).
[10] JAMESON A. Aerodynamic design via control theory[J]. Journal of Scientific Computing, 1988, 3(3):233-260.
[11] MARTINS J R R A, HWANG J. Review and unification of methods for computing derivatives of multidisciplinary computational models[J]. AIAA Journal, 2013, 51(11):2582-2599.
[12] CHERNUKHIN O, ZINGG D W. Multimodality and global optimization in aerodynamic design[J]. AIAA Journal, 2013, 51(6):1342-1354.
[13] 韩忠华. Kriging模型及代理优化算法研究新进展[J]. 航空学报, 2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese).
[14] LIU J, SONG W P, HAN Z H, et al. Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models[J]. Structural and Multidisciplinary Optimization, 2016, 55(3):925-943.
[15] HAN Z H, CHEN J, ZHANG K S, et al. Aerodynamic shape optimization of natural-laminar-flow wing using surrogate-based approach[J]. AIAA Journal, 2018, 56(7):2579-2593.
[16] ZHANG Y, HAN Z H, ZHANG K S. Variable-fidelity expected improvement method for efficient global optimization of expensive functions[J]. Structural and Multidisciplinary Optimization, 2018, 58(4):1431-1451.
[17] ZHANG K S, HAN Z H, GAO Z J, et al. Constraint aggregation for large number of constraints in wing surrogate-based optimization[J/OL]//Structural and Multidisciplinary Optimization, 2018:1-18.[2018-09-15]. https://doi.org/10.1007/s00158-018-2074-4.
[18] HAN Z H, ZHANG Y, SONG C X, et al. Weighted gradient-enhanced Kriging for high-dimensional surrogate modelling and design optimization[J]. AIAA Journal, 2017, 55(12):4330-4346.
[19] HAN Z H, ABU-ZURAYK M, GÖRTZ S, et al. Surrogate-based, aerodynamic shape optimization of a wing-body transport aircraft configuration[M]//HEINRICH R. AeroStruct:Enable and learn how to integrate flexibility in design. Berlin:Springer, 2018, 138:257-282.
[20] 韩少强, 宋文萍, 韩忠华, 等. 基于梯度增强型Kriging模型的气动反设计方法[J]. 航空学报, 2017, 38(7):120817. HAN S Q, SONG W P, HAN Z H, et al. Aerodynamic inverse design method based on gradient-enhanced Kriging model[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(7):120817(in Chinese).
[21] 乔建领, 韩忠华, 宋文萍. 基于代理模型的高效全局低音爆优化设计方法[J]. 航空学报, 2018, 39(5):121736. QIAO J L, HAN Z H, SONG W P. An efficient surrogate-based global optimization for low sonic boom design[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):121736(in Chinese).
[22] 孙祥程, 韩忠华, 柳斐, 等. 高超声速飞行器宽速域翼型/机翼设计与分析[J]. 航空学报, 2018, 39(6):121737. SUN X C, HAN Z H, LIU F, et al. Aerodynamic design and analysis of airfoil/wing at wide-range Mach numbers[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(6):121737(in Chinese).
[23] 赵童, 张宇飞, 陈海昕, 等. 面向三维机翼性能的超临界翼型优化设计方法[J]. 中国科学:物理学力学天文学, 2015, 45(10):104708. ZHAO T, ZHANG Y F, CHEN H X, et al. Aerodynamic optimization method of supercritical airfoil geared to the performance of swept and tapered wing[J]. Scientia Sinica Physica, Mechanica & Astronomica, 2015, 45(10):104708(in Chinese).
[24] TESFAHUNEGN Y A, KOZIEL S, GRAMANZINI J R, et al. Application of direct and surrogate-based optimization to two-dimensional benchmark aerodynamic problems:A comparative study:AIAA-2015-0265[R]. Reston:AIAA, 2015.
[25] HAN Z H. SurroOpt:A generic surrogate-based optimization code for aerodynamic and multidisciplinary design[C]//30th ICAS, 2016:2016-0281.
[26] HAN Z H, GOERTZ S, ZIMMERMANN R. Improving variable-fidelity surrogate modeling via gradient-enhanced Kriging and a generalized hybrid bridge function[J]. Aerospace Science and technology, 2013, 25:177-189.
[27] HAN Z H, ZIMMERMANN R, GOERTZ S. An alternative cokriging model for variable-fidelity surrogate modeling[J]. AIAA Journal, 2012, 50(5):1205-1210.
[28] HAN Z H, GOERTZ S. Hierarchical Kriging model for variable-fidelity surrogate modeling[J]. AIAA Journal, 2012, 50(9):1285-1296.
[29] KULFAN B M. Universal parametric geometry representation method[J]. Journal of Aircraft, 2008, 45(1):142-158.
[30] VASSBERG J, DEHAAN M, MELISSA RIVERS S, et al. Development of a common research model:AIAA-2008-6919[R]. Reston, VA:AIAA, 2008.
[31] 王运涛, 孙岩, 王光学, 等. DLR-F6翼身组合体的高阶精度数值模拟[J]. 航空学报, 2015, 36(9):2923-2929. WANG Y T, SUN Y, WANG G X, et al. High-order accuracy numerical simulation of DLR-F6 wing-body configuration[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9):2923-2929(in Chinese).