提出面向工程、面向适航的混合翼设计准则,基于此准则提出将格尼襟翼应用于民机机翼结冰风洞试验的单段混合翼设计中。设计准则中只对驻点位置和前缘吸力峰值提出保守性要求,易于工程实现,满足结冰适航要求。对于偏离设计点较大的状态,在单段混合翼后缘添加格尼襟翼并配合迎角调整,使得单段混合翼在此状态点处仍满足设计准则。这样使得单段混合翼也能应用于试验状态比较广的结冰风洞试验中。格尼襟翼的使用,降低了混合翼设计、试验费用,为民机结冰试航取证节约了时间。
A project-and airworthiness-oriented hybrid-wing design criterion is presented. Based on the criterion, the Gurney flap is applied to the single hybrid-wing design in the icing tunnel test. The criterion only postulates conservative requirements for the location of stagnation point and the value of suction peak, easing the project realization and meeting airworthiness requirements. For the states deviating largely from the design point, the single hybrid-wing can still meet the criterion by adding the Gurney flap and adjusting the angle of attack, making the single hybrid-wing applicable to the icing tunnel test with a wide range of states. The use of the Gurney flap reduces the costs of designing and testing, saving time for the icing airworthiness of civil aircraft.
[1] SAEED F, SELIG M S, BRAGG M B. Hybrid airfoil design method to simulation full-scale ice accretion throughout g given α range[J]. Journal of Aircraft, 1998, 35(2):233-239.
[2] SAEED F, SELIG M S, BRAGG M B. Hybrid airfoil design procedure validation for full-scale ice accretion simulation[J]. Journal of Aircraft, 1998, 36(5):769-776.
[3] FUJIWARA G E C, WIBERG B D, WOODARD B S, et al. 3D swept hybrid wing design method for icing wind tunnel tests:AIAA-2014-2616[R]. Reston, VA:AIAA, 2014.
[4] SAEED F, SELIG M S, BRAGG M B. Design of subscale airfoils with full-scale leading edges for ice accretion testing[J]. Journal of Aircraft, 1997, 34(1):94-100.
[5] SAEED F. Hybrid airfoil design methods for full-scale ice accretion simulation[D]. Chicago:University of Illinois, 1999.
[6] MORTONSON A J. Use of hybrid airfoil design in icing wind tunnel tests of large scale swept wings[D]. Illinois:University of Illinois, 2012.
[7] FUJIWARA G E C, BRAGG M B. Method for designing hybrid airfoils for icing wind-tunnel tests[J/OL]. Journal of Aircraft, 2018.(2018-08-20)[2018-09-13]. https://doi.org/10.2514/1.C034987.
[8] GUO T, ZHU C X, ZHU C L. Hybrid airfoil design for full-scale ice accretion test[J]. Transactions of Nanjing University of Aeronautics & Astronautics, 2013, 30(2):139-144.
[9] 赵克良, 陆志良, 丁力, 等. 用于结冰风洞试验的混合翼设计[J]. 空气动力学学报, 2013, 31(6):718-722. ZHAO K L, LU Z L, DING L, et al. A design method of hybrid airfoil applied in icing wind tunnel test[J]. Acta Aerodynamica Sinica, 2013, 31(6):718-722(in Chinese).
[10] NEUHART D H, PENDERGRAFT O C. A water tunnel study of Gurney flaps:NASA TM 4071[R]. Washington, D.C.:NASA, 1988.
[11] GIGUERE P, DUMAS G, LEMAY J. Gurney flap scaling for optimum lift-to-drag ratio[J]. AIAA Journal, 1997:35(12):1888-1890.
[12] MYOSE R, HERON I, PAPADAKIS M. Effect of Gurney flaps on a NACA0011 airfoil:AIAA-1996-0059[R]. Reston, VA:AIAA, 1996.
[13] MYOSE R, PAPADAKIS M, HERON I. Gurney flap experiments on airfoils, wings, and reflection plane model[J]. Journal of Aircraft, 1998:35(2):206-211.
[14] 刘沛清, 杨硕. 格尼襟翼对某型客机流动控制数值模拟[J]. 航空学报, 2012, 33(9):1616-1622. LIU P Q, YANG S. Numerical simulation of flow control over a certain aircraft with Gurney flaps[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(9):1616-1622(in Chinese).
[15] 杨炯, 张维智, 王元茂, 等. 格尼襟翼对某运输机翼型的增升试验研究[J]. 流体力学实验与测量, 2002, 16(2):25-29. YANG J, ZHANG W Z, WANG Y M, et al. An investigation of increasing lift on large transport by using Gurney flap positioned at the trailing-edge[J]. Experiments and Measurements in Fluid Mechanics, 2002, 16(2):25-29(in Chines).
[16] MAUGHMER M D, BRAMESFELD G. Experimental investigation of Gurney flaps[J]. Journal of Aircraft, 2008, 45(6):2061-2067.
[17] GRAHAM M, MURADIAN A, TRAUB L W. Experimental study on the effect of gurney flap thickness on airfoil performance[J]. Journal of Aircraft, 2018, 55(2):897-904.
[18] FUJIWARA G E C, WOODARD B S, WIBERG B D, et al. A hybrid airfoil design method for icing wind tunnel tests:AIAA-2013-2826[R]. Reston, VA:AIAA, 2013.
[19] DOT/FAA/AR. Report of the 12A working group on determination of critical ice shapes for the certification of aircraft:DOT/FAA/AR-00-37[R]. 2000.
[20] WEIGHT W B, RUTKOWSKI A. Validation results for LEWICE2. 0:NASA/CR-1999-208690[R]. Washington, D.C.:NASA, 1999.