流体力学与飞行力学

缩比发动机喷嘴热喷流噪声试验

  • 张颖哲 ,
  • 倪大明 ,
  • Incheol LEE ,
  • 林大楷 ,
  • 杨志刚
展开
  • 中国商飞北京民用飞机技术研究中心 民用飞机设计数字仿真技术北京市重点实验室, 北京 102211

收稿日期: 2018-06-12

  修回日期: 2018-07-17

  网络出版日期: 2018-09-17

基金资助

国家级项目

Test on hot jet noise of scaled engine nozzle

  • ZHANG Yingzhe ,
  • NI Daming ,
  • Incheol LEE ,
  • LIN Dakai ,
  • YANG Zhigang
Expand
  • Beijing Key Laboratory of Simulation Technology for Civil Aircraft Design, Beijing Aeronautical Science and Technology Research Institute of COMAC, Beijing 102211, China

Received date: 2018-06-12

  Revised date: 2018-07-17

  Online published: 2018-09-17

Supported by

National Level Project

摘要

为深入了解涡扇发动机喷流噪声特性,验证喷流噪声降噪方法,建立发动机喷流噪声数据库,在法国国家航天航空研究中心的CEPRA19声学风洞开展了缩比发动机喷嘴热喷流噪声试验测试工作。针对发动机热喷流模拟系统,设计加工了面积比(外涵喷嘴面积与内涵喷嘴面积之比)为5和7的两种喷嘴构型试验模型。通过减小高温区域单个零件长度尺寸和零件壁厚的方法,降低热膨胀对模型尺寸的影响。在声学风洞中完成了不同工况条件下两种面积比圆形喷嘴和锯齿形喷嘴的远场噪声特性测试。通过对远场测量噪声频谱进行分析,发现随着来流速度的增大喷流噪声会减小,采用锯齿形喷嘴设计在中低频喷流噪声水平降低,在高频噪声水平有所增加。

本文引用格式

张颖哲 , 倪大明 , Incheol LEE , 林大楷 , 杨志刚 . 缩比发动机喷嘴热喷流噪声试验[J]. 航空学报, 2018 , 39(12) : 122446 -122446 . DOI: 10.7527/S1000-6893.2018.22446

Abstract

In order to understand the characteristics of turbofan engine jet noise, verify the method of reducing jet noise, and establish engine jet noise database, the hot jet noise test of scaled engine nozzle is carried out in CEPRA19 acoustic wind tunnel of the national aerospace and aeronautics research center of France. Aiming at the engine hot jet simulation system, two kinds of nozzle configurations, area ratio (the ratio of outer nozzle area to inner nozzle area) 5 and 7, are designed and manufactured. The effect of thermal expansion on the size of the model is reduced by reducing the length and thickness of a single part in the high temperature region. The far-field noise characteristics of circular nozzle and chevron nozzle with two area ratios under different working conditions are tested in an acoustic wind tunnel. The spectrum analysis of far-field measurement noise shows that the jet noise decreases with the increase of wind tunnel speed, for chevron nozzle the jet noise level decreases at middle-low frequency, and increases at high frequency.

参考文献

[1] OLSEN W A, FRIEDMAN R. Jet noise from co-axial nozzles over a wide range of geometric and flow parameters:AIAA-1974-0043[R]. Reston, VA:AIAA, 1974.
[2] TANNA H K, TESTER B J, LAU J C. The noise and flow characteristics of inverted-profile coannular jets:NASA-CR-158995[R]. Washington, D.C.:NASA, 1979.
[3] TANNA H K, MORRIS P J. The noise from normal-velocity-profile coannular jets[J]. Journal of Sound and Vibration, 1985, 98(2):213-234.
[4] THOMAS R H, CZECH M J, DOTY M J. High bypass ratio jet noise reduction and installation effects including shielding effectiveness:AIAA-2013-0541[R]. Reston, VA:AIAA, 2013.
[5] PAPAMOSCHOU D, MAYORAL S. Jet noise shielding for advanced hybrid wing-body configurations:AIAA-2011-0912[R]. Reston, VA:AIAA, 2011.
[6] DOTY M J, BROOKS T F, BURLEY C L, et al. Jet noise shielding provided by a hybrid wing body aircraft:AIAA-2014-2625[R]. Reston, VA:AIAA, 2014.
[7] MAESTRELLO L. An experimental study on porous plug jet noise suppressor:AIAA-1979-0673[R]. Reston, VA:AIAA, 1979.
[8] BRADBURY L J S, KHADEM A H. The distortion of a jet by tabs[J]. Journal of Fluid Mechanics, 1975, 70(4):801-813.
[9] SAMIMY M, ZAMAN K B M Q, REEDER M F. Effect of tabs on the flow and noise field of an axisymmetric jet[J]. AIAA Journal, 1993, 31(4):609-619.
[10] KROTHAPALLI A, KING C J. The role of streamwise vortices on sound generation of a supersonic jet:AIAA-1993-4320[R]. Reston, VA:AIAA, 1993.
[11] GLIEBE P R, BRAUSCH J F, MAJJIGI R K, et al. Jet noise suppression[J]. Journal of Acoustical Society of America, 1995, 1(2):207-269.
[12] CALKINS F T, BUTLER G W. Variable geometry chevrons for jet noise reduction:AIAA-2006-2546[R]. Reston, VA:AIAA, 2006.
[13] 何敬玉, 李晓东. 锯齿形喷嘴抑制热喷流噪声的实验研究[J]. 推进技术, 2015, 36(2):167-174. HE J Y, LI X D. Investigation into hot jet noise reduction mechanisms of chevron nozzles[J]. Journal of Propulsion Technology, 2015, 36(2):167-174(in Chinese).
[14] MASSEY S J, ELMILIGUI A A, HUNTER C A, et al. Computational analysis of a chevron nozzle uniquely tailored for propulsion airframe aeroacoustics:AIAA-2006-2436[R]. Reston, VA:AIAA, 2006.
[15] SAIYED N, MIKKELSEN K, BRIDGES J. Acoustics and thrust of quiet separate-flow high-bypass-ratio nozzles[J]. AIAA Journal, 2003, 41(3):372-378.
[16] NESBITT E, MENGLE V, CZECH M, et al. Flight test results for uniquely tailored propulsion-airframe aeroacoustic chevrons:AIAA-2006-2438[R]. Reston, VA:AIAA, 2006.
[17] CALLENDER B, GUTMARK E. A near-filed investigation of cheveron nozzle mechanisms:AIAA-2003-3210[R]. Reston, VA:AIAA, 2003.
[18] NESBITT E, BRUSNIAK L, UNDERBRINK J, et al. Effects of chevrons on engine jet noise structure:AIAA-2007-3597[R]. Reston, VA:AIAA, 2007.
[19] MENGLE V G. Jet noise characteristics of chevrons in internally mixed nozzles:AIAA-2005-2934[R]. Reston, VA:AIAA, 2005.
[20] STONE J R, KREJSA E A, CLARK B J. Jet noise modeling for coannular nozzles including the effects of chevrons:NASA-CR-2003-212522[R]. Washington, D.C.:NASA, 2003.
[21] HENDERSON B, NORUM T. Impact of fluidic chevrons on supersonic jet noise:AIAA-2007-3595[R]. Reston, VA:AIAA, 2007.
[22] 汪海洋, 李晓东. 超音速喷流啸声发声机理的实验研究[J]. 工程热物理学报, 2006, 27(2):232-234. WANG H Y, LI X D. On the generation mechanisms of supersonic jet screech tones[J]. Journal of Engineering Thermophysics, 2006, 27(2):232-234(in Chinese).
文章导航

/