电子电气工程与控制

近地卫星严格回归轨道保持控制

  • 杜耀珂 ,
  • 杨盛庆 ,
  • 完备 ,
  • 王文妍 ,
  • 陈筠力
展开
  • 1. 上海航天控制技术研究所, 上海 201109;
    2. 上海市空间智能自主控制技术重点实验室, 上海 201109;
    3. 上海航天技术研究院, 上海 201109

收稿日期: 2018-06-14

  修回日期: 2018-07-13

  网络出版日期: 2018-09-05

基金资助

上海市青年科技启明星计划(17QB1401400)

Strictly-regressive orbit maintenance control of near earth satellites

  • DU Yaoke ,
  • YANG Shengqing ,
  • WAN Bei ,
  • WANG Wenyan ,
  • CHEN Junli
Expand
  • 1. Shanghai Institute of Spaceflight Control Technology, Shanghai 201109, China;
    2. Shanghai Key Laboratory of Aerospace Intelligent control Technology, Shanghai 201109, China;
    3. Shanghai Academy of Spaceflight Technology, Shanghai 201109, China

Received date: 2018-06-14

  Revised date: 2018-07-13

  Online published: 2018-09-05

Supported by

Shanghai Youth Science and Technology Star Project (17QB1401400)

摘要

研究了近地卫星基于严格回归参考轨道的轨道保持控制方法:将卫星编队理论引入单星绝对轨道保持控制,提出了"虚拟卫星编队"的概念,分析了卫星轨道相对于参考空间轨迹在轨道摄动情况下的偏离状态及变化趋势,然后根据卫星编队相对运动学,推导出了偏离状态与虚拟卫星编队构形参数之间的对应关系,并设计了以轨道参数超调、偏置及阈值触发为特征的管道保持控制策略。数值仿真结果表明,使用该控制策略能够将卫星轨道保持在以空间参考轨迹为中心的轨道管道内,并且有效减少了因周期性轨道摄动波动造成的管道保持控制量和控制频次。研究成果对于有空间轨迹回归要求的卫星轨道保持控制具有指导意义。

本文引用格式

杜耀珂 , 杨盛庆 , 完备 , 王文妍 , 陈筠力 . 近地卫星严格回归轨道保持控制[J]. 航空学报, 2018 , 39(12) : 322449 -322449 . DOI: 10.7527/S1000-6893.2018.22449

Abstract

The maintenance control method for strictly-regressive orbit of near earth satellites is investigated. Firstly, the satellites' formation flying theory is used in this control, and the concept of "virtual formation flying satellites" is proposed. Then, applying this concept, the satellite's tube radius error relative to the reference trajectory is simulated and analyzed. Based on the relative movement of formation flying satellites, the accumulated departure of the satellite is deduced using formation flying parameters and relative orbit elements. Furthermore, the tube maintenance strategy is designed, featuring the orbit elements overshooting, offsetting and threshold trigger. Finally, numerical simulation results show that the satellite's orbit could be controlled in the orbit tube with this strategy and the short-term periodic perturbation can be reduced effectively. The study can be used in the maintenance control of satellite's orbit with strictly-regressive orbit demands.

参考文献

[1] 杨嘉墀, 范秦鸿, 张云彤, 等. 航天器轨道动力学与控制[M]. 北京:宇航出版社, 1999. YANG J C, FAN J F. The spacecraft orbital dynamics and control[M]. Beijing:China Astronautic Publishing House, 1999(in Chinese).
[2] 卫国宁, 骆剑, 康志宇, 等.一种星下点精确重访约束下的轨道设计方法[J].中国空间科学技术, 2016, 36(4):67-73. WEI G N, LUO J, KANG Z Y, et al. A method of orbit design based on precise revisit of a given ground track[J]. China Space Science and Technology, 2016, 36(4):67-73(in Chinese).
[3] RIM H J, SCHUTZ B E, WEBB C E, et al. Repeat orbit characteristics and maneuver strategy for a synthetic aperture radar satellite[J]. Journal of Spacecraft & Rockets, 1971, 37(5):638-644.
[4] YAMAMOTO T, ARIKAWA Y, UEDA Y, et al. Autonomous precision orbit control considering observation planning:ALOS-2 flight results[J]. Journal of Guidance, Control and Dynamics, 2016, 39(6):1-21.
[5] 杨盛庆, 杜耀珂, 陈筠力. 基于迭代修正方法的严格回归轨道设计[J]. 宇航学报, 2016, 37(4):420-426. YANG S Q, DU Y K, CHEN J L. Design of strictly regressive orbit based on iterative adjustment method[J]. Journal of Astronautics, 2016, 37(4):420-426(in Chinese).
[6] D'AMICO S, ARBINGER C, KIRSCHNER M, et al. Generation of an optimum target trajectory for the TerraSAR-X repeat observation satellite[C]//Proceedings of the 18th International Symposium on Space Flight Dynamics (ESA SP-548), 2004, 548:137.
[7] CHRISTIAN A, SIMONE D A, EINEDER M. Precise groud-the-loop orbit control for low earth observation satellites[C]//Proceedings of the 18th International Symposium on Space Flight Dynamics, 2004:333-338.
[8] AORPIMAI M, PALMER P L. Repeat-ground track orbit acquisition and maintenance for earth-observation satellites[J]. Journal of Guidance, Control and Dynamics, 2007, 30(3):654-659.
[9] YUJI O, YUKIHIRO K, SHINICHI S. ALOS-2 development status and draft acquisition strategy[C]//Proceedings of the Sensors, Systems, and Next-Generation Satellites conference, 2012.
[10] FLORIO S D, D'AMICO S, RADICE G. Flight results of precise autonomous orbit keeping experiment on PRISMA mission[J]. Journal of Spacecraft & Rockets, 2013, 50(50):662-674.
[11] YAMAMOTO T, KAWANO I, IWATA T, et al. Autonomous precision orbit control of ALOS-2 for repeat-pass SAR interferometry[C]//IEEE Geoscience and Remote Sensing Symposium. Piscataway, NJ:IEEE Press, 2014:146-149.
[12] 杜耀珂, 阳光, 王文妍. InSAR卫星编队构型的e/i矢量设计方法[J]. 上海航天, 2011, 28(5):8-13. DU Y K, YANG G, WANG W Y. e/i vector design method for InSAR formation flying orbit[J]. Aerospace Shanghai, 2011, 28(5):8-13(in Chinese).
[13] 贺东雷, 曹喜滨, 马骏, 等. 基于相对偏心率/倾角矢量的编队控制方法[J]. 系统工程与电子技术, 2011, 33(4):833-837. HE D L, CAO X B, MA J, et al. Formation control approach based on relative eccentricity/inclination vector[J]. Systems Engineering and Electronic, 2011, 33(4):833-837(in Chinese).
[14] 刘林. 航天器轨道理论[M]. 北京:国防工业出版社, 2000. LIU L. Orbit theory of spacecraft[M]. Beijing:National Defense Industry Press, 2000(in Chinese).
[15] 杨维廉. 基于轨道摄动解的卫星编队飞行[J]. 宇航学报, 2008, 29(4):1166-1171. YANG W L. Formation flying based on orbit perturbation solution[J]. Journal of Astronautics, 2008, 29(4):1166-1171(in Chinese).
[16] ARBINGER C, D'AMICO S. Impact of orbit prediction accuracy on low Earth remote sensing flight dynamics operations[C]//International Symposium on Space Flight Dynamics, 2004.
[17] 杨盛庆, 杜耀珂, 王文妍, 等. 严格回归轨道的管道导航方法研究[J]. 中国空间科学技术, 2017, 37(6):10-16. YANG S Q, DU Y K, WANG W Y, et al. Study on the tube-navigation of strictly-regressive orbit[J]. Chinese Space Science and Technology, 2017, 37(6):10-16(in Chinese).
[18] 刘付成, 完备, 杜耀珂, 等. 近地轨道编队飞行卫星构形保持控制方法研究[J]. 上海航天, 2014, 31(4):6-10. LIU F C, WAN B, DU Y K, et al. Research on satellites formation-keeping control in low earth orbit[J]. Aerospace Shanghai, 2014, 31(4):6-10(in Chinese).
文章导航

/