流体力学与飞行力学

超临界压力下正癸烷在水平矩形冷却通道内的流动传热数值模拟

  • 张卓远 ,
  • 黄世璋 ,
  • 高效伟
展开
  • 大连理工大学 航空航天学院, 大连 116024

收稿日期: 2018-05-09

  修回日期: 2018-05-29

  网络出版日期: 2018-08-30

Numerical simulation of heat transfer of n-decane under supercritical pressure in horizontal rectangular cooling channels

  • ZHANG Zhuoyuan ,
  • HUANG Shizhang ,
  • GAO Xiaowei
Expand
  • School of Aeronautics and Astronautics, Dalian University of Technology, Dalian 116024, China

Received date: 2018-05-09

  Revised date: 2018-05-29

  Online published: 2018-08-30

摘要

为了研究浮升力效应对超燃冲压发动机燃烧室不同位置冷却通道传热特性的影响,对超临界压力下正癸烷在水平矩形冷却通道内的流动传热-固体导热耦合过程展开了详细的数值模拟研究。重点考察了燃烧室不同位置的冷却通道中浮升力对温度以及热流分配的影响及其机理。结果表明:由浮升力引起的二次流动使燃烧室不同位置的冷却通道温度分布和热流分配呈现显著的差异;浮升力提升了燃烧室不同位置冷却通道的换热效果,其中受热方向和重力作用方向相同的冷却通道换热性能提升得最多;修正的Jackson&Hall经验公式不能预测浮升力对冷却通道壁面对流换热的影响,需要寻找其他的经验公式或使用CFD手段进行计算分析来解决这一问题。

本文引用格式

张卓远 , 黄世璋 , 高效伟 . 超临界压力下正癸烷在水平矩形冷却通道内的流动传热数值模拟[J]. 航空学报, 2018 , 39(12) : 122297 -122297 . DOI: 10.7527/S1000-6893.2018.22297

Abstract

In order to examine the effect of buoyancy on conjugate heat transfer of hydrocarbon fuel flowing in horizontal rectangular scramjet-engine cooling channels at different locations, a numerical simulation of conjugate heat transfer of n-decane under supercritical pressure is carried out. The influence and its mechanism of buoyancy on temperature and wall heat flux distribution in cooling channels at different locations are emphatically discussed and analyzed. Results indicate that the secondary flow caused by buoyancy has a significant impact on the distribution of temperature and wall heat flux in cooling channels at different locations. Buoyancy enhances the heat transfer capacity of n-decane flowing in rectangular engine cooling channels, and the heat transfer performance of n-decane in the cooling channels with the same heating direction and direction of gravity is improved the most. The modified Jackson&Hall empirical heat transfer expression is not applicable for heat transfer prediction of n-decane at supercritical pressures with consideration of buoyancy effect and therefore it is necessary to find other empirical formulas or to use the CFD method to solve this problem.

参考文献

[1] SHARABI M, AMBROSINI W, HE S, et al. Prediction of turbulent convective heat transfer to a fluid at supercritical pressure in square and triangular channels[J]. Annals of Nuclear Energy, 2008, 35(6):993-1005.
[2] LIU S H, HUANG Y P, WANG J F, et al. Numerical investigation of buoyancy effect on heat transfer to carbon dioxide flow in a tube at supercritical pressures[J]. International Journal of Heat and Mass Transfer, 2018, 117:595-606.
[3] LIU X, XU X, LIU C, et al. Numerical study of the effect of buoyancy force and centrifugal force on heat transfer characteristics of supercritical CO2 in helically coiled tube at various inclination angles[J]. Applied Thermal Engineering, 2017, 116:500-515.
[4] LICHT J, ANDERSON M, CORRADINI M. Heat transfer to water at supercritical pressures in a circular and square annular flow geometry[J]. International Journal of Heat and Fluid Flow, 2008, 29(1):156-166.
[5] 吴刚, 毕勤成, 王汉, 等. 超临界压力水在倾斜上升管内传热的试验研究[J]. 西安交通大学学报, 2011, 45(5):6-11. WU G, BI Q C, WANG H, et al. Heat transfer characteristics of supercritical water in inclined upward tube[J]. Journal of Xi'an Jiaotong University, 2011, 45(5):6-11(in Chinese).
[6] SHARMA M, VIJAYAN P K, PILKHWAL D S, et al. Natural convective flow and heat transfer studies for supercritical water in a rectangular circulation loop[J]. Nuclear Engineering and Design, 2014, 273:304-320.
[7] LEE S H. Numerical study of convective heat transfer to supercritical water in rectangular ducts[J]. International Communications in Heat and Mass Transfer, 2010, 37(10):1465-1470.
[8] 程泽源, 朱剑琴, 李海旺. 竖直圆管内超临界碳氢燃料换热恶化的直径效应[J]. 航空学报, 2016, 37(10):2941-2951. CHENG Z Y, ZHU J Q, LI H W. Diameter effect on heat transfer deterioration of supercritical hydrocarbon fuel in vertical round tubes[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(10):2941-2951(in Chinese).
[9] 严俊杰, 刘耘州, 闫帅, 等. 超临界压力下碳氢燃料在竖直圆管内对流换热实验研究[J]. 工程热物理学报, 2016, 37(11):2385-2392. YAN J J, LIU G Z, YAN S, et al. Experimental investigation on convection heat transfer of hydrocarbon fuels at supercritical pressures in vertical tubes[J]. Journal of Engineering Thermophysics, 2016, 37(11):2385-2392(in Chinese).
[10] 党国鑫, 仲峰泉, 陈立红, 等. 超临界态煤油流动与对流传热特性数值研究[J]. 中国科学:技术科学, 2013, 43(4):440-446. DANG G X, ZHONG F Q, CHEN L H, et al. Numerical investigation on flow and convective heat transfer of aviation kerosene at supercritical conditions[J]. Scientia Sinica (Technologica), 2013, 43(4):440-446(in Chinese).
[11] 李勋锋, 仲峰泉, 范学军, 等. 超临界压力下航空煤油圆管流动和传热的数值研究[J]. 推进技术, 2010, 31(4):467-472. LI X F, ZHONG F Q, FAN X J, et al. Numerical study of convective heat transfer of aviation kerosene flows in pipe at supercritical pressure[J]. Journal of Propulsion Technology, 2010, 31(4):467-472(in Chinese).
[12] ZHONG F Q, FAN X, YU G, et al. Heat transfer of aviation kerosene at supercritical conditions[J]. Journal of Thermophysics and Heat Transfer, 2009, 23(3):543-550.
[13] WEN J, HUANG H, JIA Z, et al. Buoyancy effects on heat transfer to supercritical pressure hydrocarbon fuel in a horizontal miniature tube[J]. International Journal of Heat and Mass Transfer, 2017, 115:1173-1181.
[14] 阮波, 孟华. 裂解吸热反应对乙烷超临界传热的影响[J]. 工程热物理学报, 2012, 33(1):121-124. RUAN B, MENG H. Effects of endothermic cracking on supercritical heat transfer of ethane[J]. Journal of Engineering Thermophysics, 2012, 33(1):121-124(in Chinese).
[15] 阮波. 超临界压力下正癸烷裂解吸热和对流传热现象的数值模拟研究[D]. 杭州:浙江大学, 2013:73-87. RUAN B. Numerical studies of convective heat transfer of n-decane with endothermic pyrolytic reaction at supercritical pressures[D]. Hangzhou:Zhejiang University, 2013:73-87(in Chinese).
[16] 徐可可. 航空煤油RP-3超临界压力湍流传热和裂解吸热现象的数值模拟研究[D]. 杭州:浙江大学, 2017:123-141. XU K K. Numerical studies of turbulent heat transfer and endothermic pyrolysis of aviation kerosene RP-3 at supercritical pressures[D]. Hangzhou:Zhejiang University, 2017:123-141(in Chinese).
[17] ELY J F, HANLEY H J M. Prediction of transport properties. 1. Viscosity of fluids and mixtures[J]. Industrial and Engineering Chemistry Fundamentals, 1981, 20(4):323-332.
[18] MENG H, YANG V. A unified treatment of general fluid thermodynamics and its application to a preconditioning scheme[J]. Journal of Computational Physics, 2003, 189(1):277-304.
[19] RUAN B, HUANG S, MENG H, et al. Flow dynamics in transient heat transfer of n-Decane at supercritical pressure[J]. International Journal of Heat and Mass Transfer, 2017, 115:206-215.
[20] RUAN B, HUANG S, MENG H, et al. Transient responses of turbulent heat transfer of cryogenic methane at supercritical pressures[J]. International Journal of Heat and Mass Transfer, 2017, 109:326-335.
[21] HUANG S, RUAN B, MENG H, et al. Boundary effects on flow oscillations in transient heat transfer of n-decane at supercritical pressure[J]. International Journal of Heat and Mass Transfer, 2018, 123:821-825.
[22] 黄世璋, 阮波, 高效伟, 等. 超临界压力下碳氢燃料裂解与流动传热模拟的快速算法[J]. 航空学报, 2018, 39(4):95-108. HUANG S Z, RUAN B, GAO X W, et al. A fast algorithm for simulating hydrocarbon fuel heat transfer with endothermic pyrolysis under supercritical pressures[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(4):95-108(in Chinese).
[23] 黄世璋, 阮波, 高效伟. 超临界压力低温甲烷波纹管内强化换热数值研究[J]. 航空学报, 2017, 38(5):22-35. HUANG S Z, RUAN B, GAO X W. Numerical investigation of heat transfer enhancement of cryogenic-propellant methane in corrugated tubes at supercritical pressures[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(5):22-35(in Chinese).
[24] ADEBIYI G A, HALL W B. Experimental investigation of heat transfer to supercritical pressure carbon dioxide in a horizontal pipe[J]. International Journal of Heat and Mass Transfer, 1976, 19(7):715-720.
[25] WANG L, CHEN Z, MENG H. Numerical study of conjugate heat transfer of cryogenic methane in rectangular engine cooling channels at supercritical pressures[J]. Applied Thermal Engineering, 2013, 54(1):237-246.
文章导航

/