电子电气工程与控制

基于深度神经网络的空中目标作战意图识别

  • 周旺旺 ,
  • 姚佩阳 ,
  • 张杰勇 ,
  • 王勋 ,
  • 魏帅
展开
  • 1. 空军工程大学 信息与导航学院, 西安 710077;
    2. 中国人民解放军 95910部队, 酒泉 735000

收稿日期: 2018-06-21

  修回日期: 2018-07-31

  网络出版日期: 2018-08-27

基金资助

国家自然科学基金(61573017,61703425)

Combat intention recognition for aerial targets based on deep neural network

  • ZHOU Wangwang ,
  • YAO Peiyang ,
  • ZHANG Jieyong ,
  • WANG Xun ,
  • WEI Shuai
Expand
  • 1. Information and Navigation College, Air Force Engineering University, Xi'an 710077, China;
    2. Unit 95910 of the PLA, Jiuquan 735000, China

Received date: 2018-06-21

  Revised date: 2018-07-31

  Online published: 2018-08-27

Supported by

National Natural Science Foundation of China (61573017, 61703425)

摘要

传统基于空中目标特征状态推理作战意图的方法,需要大量的领域专家知识对特征状态的权重、先验概率等进行量化,明确特征状态与意图之间的对应关系,而神经网络可以在领域专家知识不足条件下,通过自身训练得到特征状态与意图之间的规则。针对反向传播(BP)算法在更新网络节点权值时收敛速度慢、容易陷入局部最优的问题,通过引入ReLU(Rectified Linear Unit)激活函数和自适应矩估计(Adam)优化算法,设计了基于深度神经网络的作战意图识别模型,提高了模型收敛速度,有效地防止陷入局部最优。仿真结果表明,所提方法能够有效识别空中目标作战意图,获得更高的识别率。

本文引用格式

周旺旺 , 姚佩阳 , 张杰勇 , 王勋 , 魏帅 . 基于深度神经网络的空中目标作战意图识别[J]. 航空学报, 2018 , 39(11) : 322468 -322476 . DOI: 10.7527/S1000-6893.2018.22468

Abstract

Based on the state feature of the target, traditional methods of inferring aerial targets’ combat intention, require a large amount of domain expert knowledge to quantify the weight of feature, prior probability and clear correspondence between state characteristics and intention. However, the neural network method can train itself to obtain the rules between state features and intentions in the absence of domain expert knowledge. The Back Propagation (BP) algorithm has slow convergence rate and can easily fall into local optimum when updating the network node weights. Through the introduction of the Rectified Linear Unit (ReLU) activation function and the Adaptive moment estimation (Adam) optimization algorithm, a combat intention recognition model based on deep neural network is designed to improve the convergence speed of the model and effectively prevent the algorithm from falling into a local optimum. The simulation results show that the proposed method can effectively recognise the aerial targets’ combat intention and obtain a higher recognition rate.

参考文献

[1] NOBLE D F. Schema-based knowledge elicitation for planning and situation assessment aids[J]. IEEE Transactions on Systems Man & Cybernetics, 1989, 19(3): 473-482.
[2] JIANG W, HAN D, FAN X, et al. Research on threat assessment based on dempster-shafer evidence theory[J]. Lecture Notes in Electrical Engineering, 2012, 113: 975-984.
[3] 李曼, 冯新喜, 张薇. 基于模板的态势估计推理模型与算法[J]. 火力与指挥控制, 2010, 35(6): 64-66. LI M, FENG X X, ZHANG W. Template-based inference model and algorithm for situation assessment in information fusion[J]. Fire Control & Command Control, 2010, 35(6): 64-66 (in Chinese).
[4] BEN-BASSAT M, FREEDY E. Knowledge requirements and management in expert decision support systems for (military) situation assessment[J]. Systems Man & Cybernetics IEEE Transactions on, 1982, 12(4): 479-490.
[5] 伍之前, 李登峰. 基于推理和多属性决策的空中目标攻击意图判断模型[J]. 电光与控制, 2010, 17(5): 10-13. WU Z Q, LI D F. A model for aerial target attacking intention judgment based on reasoning and multi-attribute decision making[J]. Electronics Optics & Control, 2010, 17(5): 10-13 (in Chinese).
[6] CARLING R. Naval situation assessment using a real-time knowledge-based system[J]. Naval Engineers Journal, 2010, 111(5): 108-113.
[7] JIN Q, GOU X, JIN W, et al. Intention recognition of aerial targets based on Bayesian optimization algorithm[C]//IEEE International Conference on Intelligent Transportation Engineering. Piscataway, NJ: IEEE Press, 2017: 356-359.
[8] DAHLBOM A. A comparison of two approaches for situation detection in an air-to-air combat scenario[C]//Modeling Decisions for Artificial Intelligence. Berlin: Springer, 2013: 70-81.
[9] CHEN Z G, WU X F. A novel multi-timescales layered intention recognition method[J]. Applied Mechanics & Materials, 2014, 644-650: 4607-4611.
[10] 贾苏元, 徐金钰, 王钰. 基于自适应神经网络模糊系统(ANFIS)的空中目标意图分类[J]. 电子测量技术, 2016, 39(12): 62-66. JIA S Y, XU J Y, WANG Y. Classification of air target intention based on adaptive neural network fuzzy system(ANFIS)[J]. Electronic Measurement Technology, 2016, 39(12): 62-66 (in Chinese).
[11] 陈浩, 任卿龙, 滑艺, 等. 基于模糊神经网络的海面目标战术意图识别[J]. 系统工程与电子技术, 2016, 38(8): 1847-1853. CHEN H, REN Q L, HUA Y, et al. Fuzzy neural network based tactical intention recognition for sea targets[J]. Systems Engineering and Electronics, 2016, 38(8): 1847-1853 (in Chinese).
[12] AHMED A A, MOHAMMED F M. SAIRF: A similarity approach for attack intention recognition using fuzzy min-max neural network[J]. Journal of Computational Science, 2018, 25: 467-473.
[13] 欧微, 柳少军, 贺筱媛, 等. 基于时序特征编码的目标战术意图识别算法[J]. 指挥控制与仿真, 2016, 38(6): 36-41. OU W, LIU S J, HE X Y, et al. Tactical intention recognition algorithm based on encoded temporal features[J]. Command Control & Simulation, 2016, 38(6): 36-41 (in Chinese).
[14] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
[15] GLOROT X, BORDES A, BENGIO Y. Deep sparse rectifier neural networks[C]//International Conference on Artificial Intelligence and Statistics. 2011: 315-323.
[16] KINGMA D P, BA J. Adam: A method for stochastic optimization[J]. Computer Science, 2014: 1-5.
[17] WANG L, ZHANG J, LIU P, et al. Spectral-spatial multi-feature-based deep learning for hyperspectral remote sensing image classification[J]. Soft Computing, 2017, 21(1): 213-221: 1-15.
[18] CHANG P, ZHANG J, HU J, et al. A deep neural network based on ELM for semi-supervised learning of image classification[J]. Neural Processing Letters, 2017, 48(1): 375-388.
[19] ANSARI Z, SEYYEDSALEHI S A. Toward growing modular deep neural networks for continuous speech recognition[J]. Neural Computing & Applications, 2017, 28(S1): 1177-1196.
[20] WEN Z, LI K, HUANG Z, et al. Improving deep neural network based speech synthesis through contextual feature parametrization and multi-task learning[J]. Journal of Signal Processing Systems, 2018, 90(7): 1025-1037.
[21] CHEN K, DING G G. Attribute-based supervised deep learning model for action recognition[J]. Frontiers of Computer Science, 2017, 11(2): 219-229.
[22] LI Q, QIU Z, YAO T, et al. Learning hierarchical video representation for action recognition[J]. International Journal of Multimedia Information Retrieval, 2017, 6(1): 85-98.
文章导航

/