[1] MARTINS J R R A. A coupled-adjoint method for high-fidelity. aero-structural optimization[D]. Palo Alto:Stanford University, 2002:79-87.
[2] MADER C A, KENWAY G K W, MARTINS J R R A. Towards high-fidelity aerostructural optimization using a coupled adjoint approach:AIAA-2008-5968[R]. Reston,VA:AIAA, 2008.
[3] LEOVIRIYAKIT K, JAMESON A. Case studies in aero-structural wing planform and section optimization:AIAA-2004-5372[R]. Reston,VA:AIAA, 2004.
[4] MOHAMMD A Z, BREZILLON J. Shape optimization using the aerostructural coupled adjoint approach for viscous flows[C]//Proceedings of Evolutionary and Deterministic for Design, Optimization and Control, 2011.
[5] MARCELET M, PETER J, CARRIER G. Sensitivity analysis of a strongly coupled aero-structural system using direct and adjoint methods:AIAA-2008-5863[R]. Reston,VA:AIAA, 2008.
[6] GHAZLANE I, CARRIER G, DUMONT A, et al. Aerostructural adjoint method for flexible wing optimization:AIAA-2012-1924[R]. Reston,VA:AIAA, 2012.
[7] 白俊强, 孙智伟, 董建鸿, 等. 考虑机翼尾流影响的运输类飞机后体气动外形优化设计[J]. 空气动力学学报, 2015, 33(1):134-141. BAI J Q, SUN Z W, DONG J H, et al. After body aerodynamic optimization design of transport airplane considering wing wake flow[J]. Acta Aerodynamica Sinica, 2015, 33(1):134-141(in Chinese).
[8] 王超, 高正红. 小展弦比薄机翼精细化气动优化设计研究[J]. 中国科学:技术科学, 2015, 45(6):643-653. WANG C, GAO Z H. Refined aerodynamic design optimization of a wing with small aspect ratio[J]. Scientia Sinica Technologica, 2015, 45(6):643-653(in Chinese).
[9] 李彬, 邓有奇, 唐静, 等. 基于三维非结构混合网格的离散伴随优化方法[J]. 航空学报, 2014, 35(3):674-686. LI B, DENG Y Q, TANG J, et al. Discrete adjoint optimization method for 3D unstructured grid[J]. Acta Aeronauticaet Astronautica Sinica, 2014, 35(3):674-686(in Chinese).
[10] 左英桃, 高正红, 詹浩. 基于N-S方程和离散共轭方法的气动设计方法研究[J]. 空气动力学学报, 2009, 27(1):67-72. ZUO Y T, GAO Z H, ZHAN H. Aerodynamic design method based on N-S equations and discrete adjoint approach[J]. Acta Aerodynamica Sinica, 2009, 27(1):67-72(in Chinese).
[11] 熊俊涛, 乔志德, 杨旭东, 等. 基于黏性伴随方法的跨声速机翼气动优化设计[J]. 航空学报, 2007, 28(2):281-285. XIONG J T, QIAO Z D, YANG X D, et al. Optimum aerodynamic design of transonic wing based on viscous adjoint method[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(2):281-285(in Chinese).
[12] HICKS R M, HENNE P A. Wing design by numerical optimization[J]. Journal of Aircraft, 1978, 15(7):407-412.
[13] 王建军, 高正红. 翼型参数化方法分析及改进[J]. 航空计算技术, 2010, 40(4):46-49. WANG J J, GAO Z H. Analysis and improvement of hickshenne airfoil parameterization method[J]. Aeronautical Computing Technique, 2010, 40(4):46-49(in Chinese).
[14] KULFAN B M. A universal parametric geometry representation method-‘CST’:AIAA-2007-0062[R]. Reston, VA:AIAA, 2007.
[15] 李静, 高正红, 黄江涛, 等. 基于CST参数化方法气动优化设计研究[J]. 空气动力学学报, 2012, 30(4):443-449. LI J, GAO Z H, HUANG J T, et al. Aerodynamic optimization system based on CST technique[J]. Acta Aerodynamica Sinica, 2012, 30(4):443-449(in Chinese).
[16] FARIN G. Curves and surfaces for computer aided geometric design[M]. New York:Academic Press, 1990.
[17] PIEGL L, TILLER W. The NURBS book[M]. Berlin Heidelberg:Springer-Verlag, 1997.
[18] 朱心雄. 自由曲线曲面造型技术[M]. 北京:科学出版社, 2000. ZHU X X. Free curve and surface modeling technology[M]. Beijing:Science Press, 2000(in Chinese).
[19] SAMAREH J A. Aerodynamic shape optimization based on free-form deformation:AIAA-2004-4630[R]. Reston, VA:AIAA, 2004.
[20] 马晓永, 范召林, 吴文华, 等. 基于NURBS方法的机翼气动外形优化[J]. 航空学报, 2011, 32(9):1616-1621. MA X Y, FAN Z L, WU W H, et al. Aerodynamic shape optimization for wing based on NURBS[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(9):1616-1621(in Chinese).
[21] SEDERBERG T W, PARRY S R. Free-form deformation of solid geometric models[J]. Computer Graphics, 1986, 20(4):151-160.
[22] LI J, GAO Z H, HUANG J T, et al. Aerodynamic design optimization of nacelle/pylon position on aircraft[J]. Chinese Journal of Aeronautics, 2013, 26(4):850-857
[23] HUANG J T, ZHOU Z, GAO Z H. Aerodynamic many-objective integrated optimization based on principle components analysis[J]. Chinese Journal of Aeronautics, 2017, 30(4):1336-1348.
[24] LIU X Q, QIN N, XIA N. Fast dynamic grid deformation based on Delaunay graph mapping[J]. Journal of Computational Physics, 2006, 211(2):405-423.
[25] BUHMANN M. Radial basis functions[M]. Cambridge:Cambridge University Press, 2005.
[26] WENDLAND H. Fast evaluation of radial basis functions:Methods based on partition of unity[M]//Approximation theory X:Wavelets, splines, and applications. Nashville:Vanderbilt University Press, 2002:473-483.
[27] HUANG J T, GAO Z H, WANG C. A new grid deformation technology with high quality and robustness based on quaternion[J]. Chinese Journal of Aeronautics, 2014, 27(5):1078-1085.
[28] 黄江涛, 高正红, 周铸, 等. 一种新型高鲁棒性动网格技术及应用[J]. 力学学报, 2014, 46(2):291-298. HUANG J T, GAO Z H, ZHOU Z, et al. A new highly robust grid deformation technique and its application[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(2):291-298(in Chinese).
[29] SPEKREIJSE S P, BOERSTOEL J W. An algorithm to check the topological validity of multiblock domain decompositions:NLR-TP-98198[R]. Greenwich, 1998.
[30] MARUYAMA D, BAILLY D, CARRIER G. High quality grid deformation using quaternions for orthogonality preservation[J]. AIAA Journal, 2012, 52(12):2712-2729.
[31] SMITH R E. Transfinite interpolation (TFI) generation systems[M]//Handbook of grid generation. CRC Press, 1999.
[32] FARHAT C, DEGAND C, KOOBUS B, et al. Torsional springs for two-dimensional dynamic unstructured fluid grids[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 163(1):231-245.
[33] 王刚, 雷博琪, 叶正寅. 一种基于径向基函数的非结构混合网格变形技术[J]. 西北工业大学学报, 2011, 29(5):783-788. WANG G, LEI B Q, YE Z Y. An efficient deformation technique for hybrid unstructured grid using radial basis functions[J]. Journal of Northwestern Polytechnical University, 2011, 29(5):783-788(in Chinese).
[34] 陈宝林. 最优化理论与算法[M]. 北京:清华大学出版社, 2002:98-106. CHEN B L. Optimization theory and algorithm[M]. Beijing:Tsinghua University Press, 2002:98-106(in Chinese).
[35] 袁亚湘, 孙文瑜. 最优化理论与方法[M]. 北京:科学出版社, 1999. YUAN X Y, SUN W Y. Optimization theory and methods[M]. Beijing:Science Press, 1999(in Chinese).
[36] HESTENS M R, STIEFEL E L. Methods of conjugate gradients for solving linear systems[J]. Journal of Research of the National Bureau of Standards, 1952, 49(6):99-147.
[37] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural. Piscataway, NJ:IEEE Press, 1995:1942-1948.
[38] KIRKPATRICK S, GELATT C D, VECCHI M P. Optimization by simulated annealing[J]. Science, 1983, 220:671-680.
[39] HOLLAND J H. Adaptation in natural and artificial systems[M]. MIT Press, 1975.
[40] PILLO G, GRIPPOL. A continuously differentiable exact penalty function for nonlinear programming problems with inequality constraints[J]. SIAM Journal on Control and Optimization, 1984, 23(1):1093-1096.
[41] GLAD T, POLAK E. A multiplier method with automatic limitation of penalty growth[J]. Mathematical Programming, 1979, 17:140-155.
[42] LI X, ZHONG W T, SHAO Z J, et al. Applying extended automatic differentiation technique to process system optimization problems[J]. American Control Conference, 2001, 5:4079-4084.
[43] LOUIS B R. Automatic differentiation:Techniques and applications, Lecture Notes in Computer Science No.120[M]. Berlin Heidelberg:Springer-Verlag, 1981.
[44] SOBIESZCZANSKI_SOBIESKI J. Sensitivity analysis and multidisciplinary optimization for aircraft design:Recent advance and results[J]. Journal of Aircraft, 1990, 27(12):993-1001.
[45] 颜力, 陈小前, 王振国. 飞行器多学科优化设计中的灵敏度分析方法研究[J]. 航空计算技术, 2005, 35(1):1-6. YAN L, CHEN X Q, WANG Z G. The study of sensitivity analysis in the multidisciplinary design optimization of flying vehicles[J]. Aeronautical Computer Technique, 2005, 35(1):1-6(in Chinese).
[46] NESTOR V Q, HAFTKA T, SHYY W, et al. Surrogate-based analysis and optimization[J]. Progress in Aerospace Sciences, 2005, 41:1-28.
[47] ALEXANDER I, KEANE A. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45:50-79.
[48] LEDOUX S T, HERLING W W, FATTA G J. MDOPT-A multidisciplinary design optimization system using higher order analysis codes:AIAA-2004-4567[R]. Reston, VA:AIAA, 2004.
[49] 徐家宽, 白俊强, 黄江涛, 等. 考虑螺旋桨滑流影响的机翼气动优化设计[J]. 航空学报, 2014, 35(11):2910-2920. XU J K, BAI J Q, HUANG J T, et al. Aerodynamic optimization design of wing under the interaction of propeller slipstream[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(11):2910-2920(in Chinese).
[50] 李静, 高正红, 赵轲. 基于直接控制FFD参数化方法的跨声速层流翼身组合体稳健性设计[J]. 中国科学:技术科学, 2015, 45(9):964-974. LI J, GAO Z H, ZHAO K. Robust design of transonic laminar wingbody configuration based on direct manipulated FFD technique[J]. Scientia Sinica Technologica, 2015, 45(9):964-974(in Chinese).
[51] 黄江涛, 高正红, 白俊强, 等. 基于任意空间属性FFD技术的融合式翼稍小翼稳健型气动优化设计[J]. 航空学报, 2013, 34(1):37-45. HUANG J T, GAO Z H, BAI J Q, et al. Study of robust winglet design based on arbitrary space shape FFD technique[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1):37-45(in Chinese).
[52] 王超, 高正红. 小展弦比薄机翼精细化气动优化设计研究[J]. 中国科学:技术科学, 2015, 45(6):643-653. WANG C, GAO Z H. Refined aerodynamic design optimization of a wing with small aspect ratio[J]. Scientia Sinica Technologica, 2015, 45(6):643-653(in Chinese).
[53] FANG X M, ZHANG Y F, CHEN H X. Transonic nacelle aerodynamic optimization based on hybrid genetic algorithm:AIAA-2016-3833[R]. Reston,VA:AIAA, 2016.
[54] HAN Z H, ZHANG K S, LIU J, et al. Surrogate-based aerodynamic shape optimization with application to wind turbine airfoils:AIAA-2013-1108[R]. Reston,VA:AIAA, 2013.
[55] ZHANG K S, HAN Z H, LI W J, et al. Coupled aerodynamic and structural optimization of a subsonic-transport wing using surrogate model:AIAA-2008-0897[R]. Reston, VA:AIAA, 2008.
[56] 黄礼铿, 高正红, 张德虎. 基于变可信度代理模型的气动优化[J]. 空气动力学学报, 2013, 31(6):783-788. HUANG L K, GAO Z H, ZHANG D H. Aerodynamic optimization based on multi-fidelity surrogate[J]. Acta Aerodynamica Sinica, 2013, 31(6):783-788(in Chinese).
[57] 苏伟, 白俊强. 一种代理模型方法及其在气动优化设计中的应用[J]. 弹箭与制导学报, 2008, 28(3):199-202. SU W, BAI J Q. A surrogate-based optimization algorithm and its application to aerodynamic optimization design[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2008, 28(3):199-202(in Chinese).
[58] 朱莉,高正红. 基于神经网络的翼型优化设计方法研究[J]. 航空计算技术, 2007, 37(3):33-36. ZHU L, GAO Z H. Aerodynamic optimization design of airfoil based on neural networks[J]. Aeronautical Computing Technique, 2007, 37(3):33-36(in Chinese).
[59] HUANG J T, GAO Z K, ZHAO K, et al. Robust design of supercritical wing aerodynamic optimization considering fuselage interfering[J]. Chinese Journal of Aeronautics, 2010, 23(5):523-528.
[60] 李焦赞, 高正红. 多目标进化算法和代理模型技术在气动稳健优化设计中的应用[J]. 空气动力学学报, 2012, 30(1):46-51. LI J Z, GAO Z H. The application of multi-objective evolutionary algorithm and surrogate model to aerodynamic robust optimization design[J]. Acta Aerodynamica Sinica, 2012, 30(1):46-51(in Chinese).
[61] 孙智伟, 白俊强, 华俊, 等. 基于支持向量回归代理模型的气动力优化设计[J]. 航空工程进展, 2015, 6(2):149-159. SUN Z W, BAI J Q, HUA J, et al. Aerodynamic optimal design of surrogate models based on support vector regression[J]. Advances in Aeronautical Science and Engineering, 2015, 6(2):149-159(in Chinese).
[62] ZHANG K, HAN Z H. Support vector regression-based multidisciplinary design optimization in aircraft conceptual design:AIAA-2013-1160[R]. Reston,VA:AIAA, 2013.
[63] 韩忠华. Kriging模型及代理优化算法研究进展[J]. 航空学报, 2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese).
[64] 张德虎, 高正红, 王明亮. 基于变可信度模型差值的低可信度模型修正方法[J]. 西北工业大学学报, 2011, 29(2):176-182. ZHANG D H, GAO Z H, WANG M L. A new and better metamodel utilizing difference between high-and low-fidelity model[J]. Journal of Northwestern Polytechnical University, 2011, 29(2):176-182(in Chinese).
[65] 张德虎, 高正红, 李焦赞, 等. 基于双层代理模型的无人机气动隐身综合设计[J]. 空气动力学学报, 2013, 31(3):394-400. ZHANG D H, GAO Z H, LI J Z, et al. Aerodynamic and stealth synthesis design optimization of UAV based on double-stage metamodel[J]. Acta Aerodynamica Sinica, 2013, 31(3):394-400(in Chinese).
[66] LIU J, HAN Z H, SONG W P. Efficient kriging-based aerodynamic design of transonic airfoils:Some key issues:AIAA-2012-0967[R]. Reston, VA:AIAA, 2012.
[67] ZHANG Y, HAN Z H, SHI L X, et al. Multi-round surrogate-based optimization for benchmark aerodynamic design problems:AIAA-2016-1545[R]. Reston,VA:AIAA, 2016.
[68] 李焦赞, 高正红. 多变量气动设计问题分层协同优化[J]. 航空学报, 2013, 34(1):58-65. LI J Z, GAO Z H. Multivariable aerodynamic design based on multilevel collaborative optimization[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(1):58-65(in Chinese).
[69] GAO Z H, ZHAO K, WANG C. Aerodynamic shape optimization of BWB aircraft based on multi-zone collaborative optimization design method:AIAA-2015-2878[R]. Reston, VA:AIAA, 2015.
[70] WANG C, GAO Z H, ZHAO K, et al. HDMR-based surrogate model for high dimensional aerodynamic design problems:AIAA-2015-3094[R]. Reston,VA:AIAA, 2015.
[71] 左英桃, 王晓鹏, 陈云, 等. 一种高效的CFD/CSD耦合飞行器多学科优化设计方法[J]. 航空动力学报, 2014, 29(12):2898-2904. ZUO Y T, WANG X P, CHEN Y, et al. An efficient method for multidisciplinary design optimization of aircraft based on CFD/CSD coupling[J]. Journal of Aerospace Power, 2014, 29(12):2898-2904(in Chinese).
[72] 李焦赞, 高正红. 基于几何不确定性的翼型多目标稳健优化设计[J]. 力学学报, 2011, 43(3):611-615. LI J Z, GAO Z H. Multiobjective optimization methodology for airfoil robust design under geometry uncertainty[J]. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(3):611-615(in Chinese).
[73] 王波, GEA H, 白俊强, 等. 基于Stochastic Kriging模型的不确定性序贯试验设计方法[J]. 工程设计学报, 2016, 23(6):530-536. WANG B, GEA H, BAI J Q, et al. The uncertainty-based sequential design of experiment method based on stochastic kriging metamodel[J]. Chinese Journal of Engineering Design, 2016, 23(6):530-536(in Chinese).
[74] SHI L X, HAN Z H, MUHAMMAD S, et al. Surrogate-based robust airfoil design under aleatory operating-conditions and geometric uncertainties:AIAA-2016-0810[R]. Reston, VA:AIAA, 2016.
[75] 郑传宇, 黄江涛, 周铸, 等. 飞翼翼型高维目标空间多学科综合优化设计[J]. 空气动力学学报, 2017, 35(4):588-597. ZHENG C Y, HUANG J T, ZHOU Z, et al. Multidisciplinary optimization design of high dimensional target space for flying wing airfoil[J]. Acta Aerodynamica Sinica, 2017, 35(4):588-597(in Chinese).
[76] TURK M, PENTLAND A. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1):71-86.
[77] ZHANG D, ZHOU Z H. (2D)2 PCA:2-directional 2-dimensional PCA for efficient face representation and recognition[J]. Neurocomputing, 2005, 69:224-231.
[78] KIM K I, PARK S H, KIM H J. Kernel principal component analysis for texture classification[J]. IEEE Signal Processing Letters, 2001, 8(2):39-41
[79] PADULA S L, GUMBERT C R, LI W. Aerospace applications of optimization under uncertainty[J]. Optimization and Engineering, 2006, 7(3):317-328.
[80] WANG X, QIU Z, SOFFER D. Uncertainty-based design optimization in engineering:model, algorithm, and application[J]. Journal of Applied Mathematics, 2013(8):1-2.
[81] HU X, CHEN X, PARKS G T, et al. Review of improved monte carlo methods in uncertainty-based design optimization for aerospace vehicles[J]. Progress in Aerospace Sciences, 2016, 86:20-27.
[82] LEE K H, PARK G J. Robust optimization considering tolerances of design variables[J]. Computers & Structures, 2001, 79(1):77-86.
[83] CHEN W, SAHAI A, MESSAC A, et al. Exploration of the effectiveness of physical programming in robust design[J]. Journal of Mechanical Design, 2000, 122(2):155-163.
[84] CHEN W, WIECEK M M, ZHANG J. Quality utility-A compromise programming approach to robust design[J]. Journal of Mechanical Design, 1999, 121(2):179-187.
[85] HU X, CHEN X, LATTARULO V, et al. Multidisciplinary optimization under high-dimensional uncertainty for small satellite system design[J]. AIAA Journal, 2016, 54(5):1-10.
[86] TU J, CHOI K K, PARK Y H. Design potential method for robust system parameter design[J]. AIAA Journal, 2001, 39(4):667-677.
[87] LI P, ARELLANO-GARCIA H, WOZNY G. Chance constrained programming approach to process optimization under uncertainty[J]. Computers & Chemical Engineering, 2008, 32(1-2):25-45.
[88] KROESE D P, TAIMRE T, BOTEV Z I. Handbook of monte carlo methods[M]. New York:John Wiley & Sons, 2013.
[89] LIU W K, TED B, MANI A. Random field finite elements[J]. International Journal for Numerical Methods in Engineering, 1986, 23(10):1831-1845.
[90] YAO W, CHEN X, OOUYANG Q, et al. A reliability-based multidisciplinary design optimization procedure based on combined probability and evidence theory[J]. Structural and Multidisciplinary Optimization, 2013, 48(2):339-354.
[91] MCDONALD M, ZAMAN K, MAHADEVAN S. Representation and first-order approximations for propagation of aleatory and distribution parameter uncertainty[C]//Proceedings of 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, VA:AIAA, 2009:4-7.
[92] MAHADEVAN S, SMITH N. Efficient first-order reliability analysis of multidisciplinary systems[J]. International Journal of Reliability and Safety, 2006, 1(1):137-154.
[93] MAHADEVAN S, SMITH N L, ZANG T A. System risk assessment and allocation in conceptual design[M]. Washington, D.C.:National Aeronautics and Space Administration, 2003.
[94] KEWLANI G, CRAWFORD J, IAGNEMMA K. A polynomial chaos approach to the analysis of vehicle dynamics under uncertainty[J]. Vehicle System Dynamics, 2012, 50(5):749-774.
[95] XIU D B, HESTHAVEN J S. High-order collocation methods for differential equations with random inputs[J]. Siam Journal on Scientific Computing, 2005, 27(3):1118-1139.
[96] 李润泽, 张宇飞, 陈海昕. "人在回路"思想在飞机气动优化设计中演变与发展[J]. 空气动力学学报, 2017, 35(4):529-543. LI R Z, ZHANG Y F, CHEN H X. Evolution and development of "man-in-loop" in aerodynamic optimization design[J]. Acta Aerodynamica Sinica, 2017, 35(4):529-543(in Chinese).
[97] 黄江涛, 刘刚, 周铸, 等. 基于离散伴随方程求解灵敏度信息的若干问题研究[J]. 空气动力学学报, 2017, 35(4):554-562. HUANG J T, LIU G, ZHOU Z, et al. Investigation of gradient computation based on discrete adjoint method[J]. Act Aerodynamica Sinica, 2017, 35(4):554-562(in Chinese).
[98] 黄江涛, 周铸, 刘刚, 等. 飞行器气动/结构多学科延迟耦合伴随系统数值研究[J]. 航空学报, 2018, 39(5):121731. HUANG J T, ZHOU Z, LIU G, et al. Numerical study of aero-structural multidisciplinary lagged coupled adjoint system for aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(5):121731(in Chinese).
[99] RALLABHANDI S K. Sonic boom adjoint methodology and its applications[C]//Proceedings of the 29th AIAA Applied Aerodynamics Conference. Reston, VA:AIAA, 2011.