材料工程与机械制造

基于力位协同控制的大飞机机身壁板装配调姿方法

  • 陈文亮 ,
  • 潘国威 ,
  • 王珉
展开
  • 南京航空航天大学 机电学院, 南京 210016

网络出版日期: 2018-08-16

基金资助

江苏省研究生培养创新工程(KYLX15_0299)

High precision positioning method for aircraft fuselage panel based on force/position control

  • CHEN Wenliang ,
  • PAN Guowei ,
  • WANG Min
Expand
  • College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

Online published: 2018-08-16

Supported by

Funding of Jiangsu Innovation Program for Graduate Education (KYLX15_0299)

摘要

为校正中机身壁板由于重力和调姿内力产生的变形,提高中机身壁板装配调姿精度,提出了一种基于力位协同控制的装配调姿方法。通过将调姿机构等效为并联机构,推导了调姿机构的解析正反解模型;根据螺旋理论,建立了力传感器测量值与重力、调姿内力之间的映射关系,实现重力补偿值的动态计算,基于局部刚体-弹性连接假设,通过多元线性回归方法构建了调姿内力转化为位置补偿量的模型;根据Clamped-Free变形协调原理,简化了定位器调姿内力之间的协调关系,在此基础上提出了重力前馈补偿和调姿内力转化为位置补偿的力位协同控制策略,并对其进行了理论分析与设计。最后,对所提出的控制策略进行了仿真分析,结果表明采用力位协同控制方法,调姿定位精度提高35.3%,调姿内力降低77.8%,通过应用实验,说明了该方法的可行性和有效性。

本文引用格式

陈文亮 , 潘国威 , 王珉 . 基于力位协同控制的大飞机机身壁板装配调姿方法[J]. 航空学报, 2019 , 40(2) : 522403 -522403 . DOI: 10.7527/S1000-6893.2018.22403

Abstract

To correct the deformation caused by the internal forces of gravity and posture in the fuselage panel and improve the alignment accuracy of the fuselage panel assembly, an assembly posture adjustment method based on force/position control is proposed. By equating the pose adjustment mechanism as a parallel mechanism, the analytical forward and inverse solution model for the pose adjustment mechanism is deduced; based on the screw theory, the mapping relationship between the force sensor measurement value and gravity and the internal force is established, then the dynamic compensation of gravity is calculated. Based on the hypothesis of local rigid body-spring connection, the model of converting internal force to position compensation is constructed by a multiple linear regression method. The internal force of the positioner is simplified according to the Clamped-Free deformation coordination principle. Then, a control strategy contains gravity feedforward compensation and force converted to position compensation is proposed, and the theoretical analysis and design are carried out. Finally, the simulation results of the proposed control strategy show that the force/position control strategy can increase the position accuracy by 35.3% and reduce internal force by 77.8%. The feasibility and effectiveness of the proposed method are verified by an example of the position system.

参考文献

[1] SHAIK A M, RAO V V S K, RAO C S. Development of modular manufacturing systems——a review[J]. International Journal of Advanced Manufacturing Technology, 2015, 76(5-8):789-802.
[2] MCKEOWN C, WEBB P. A reactive reconfigurable tool for aerospace structures[J]. Assembly Automation, 2011, 31(4):334-343.
[3] 许国康. 大型飞机自动化装配技术[J]. 航空学报, 2008, 29(3):734-740. XU G K. Automatic assembly technology for large aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(3):734-740(in Chinese).
[4] SCHWAKE K, WULFSBERG J. Robot-based system for handling of aircraft shell parts[J]. Procedia CIRP, 2014, 23:104-109.
[5] 黄鹏, 王青, 李江雄, 等. 基于动力学模型的飞机大部件调姿轨迹规划[J]. 航空学报, 2014, 35(9):2672-2682. HUANG P, WANG Q, LI J X, et al. Adjustment optimal trajectory planning of aircraft component based on dynamic model[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(9):2672-2682(in Chinese).
[6] 郭志敏, 蒋君侠, 柯映林. 基于POGO柱三点支撑的飞机大部件调姿方法[J]. 航空学报, 2009, 30(7):1319-1324. GUO Z M, JIANG J X, KE Y L. Posture alignment for large aircraft parts based on three POGO sticks distributed support[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(7):1319-1324(in Chinese).
[7] 朱永国, 黄翔, 方伟, 等. 机身自动调姿方法及误差分析[J]. 南京航空航天大学学报, 2011, 43(2):229-234. ZHU Y G, HUANG X, FANG W, et al. Fuse-lage automatic position and pose adjustment method and its error analysis[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2011, 43(2):229-234(in Chinese).
[8] 邱宝贵, 蒋君侠, 毕运波, 等. 大型飞机机身调姿与对接试验系统[J]. 航空学报, 2011, 32(5):908-919. QIU B G, JIANG J X, BI Y B. Position alignment and joining test system for large aircraft fuselages[J]. Acta Aeronautica et Astronautica Sinica, 2011, 32(5):908-919(in Chinese).
[9] GERHARD M, TAOUFIK M, NIBAT B. High precision positioning system for aircraft structural[C]//15th International Conference on Experimental Mechanics, 2012:1-14.
[10] 马志强, 李泷杲, 邢宏文, 等. 3-PPPS并联机翼调姿机构运动学标定[J]. 计算机集成制造系统, 2015, 21(9):2378-2383. MA Z Q, LI S G, XING H W, et al. Kinematic cali-bration of 3-PPPS parallel wing posture adjustment mechanism[J].computer Integrated Manufacturing Systems, 2015, 21(9):2378-2383(in Chinese).
[11] MBAREK T, MEISSNER A, BIYIKLIOGLU N. Positioning system for the aircraft structural assembly[J]. SAE International Journal of Aerospace, 2011, 4(2):1038-1047.
[12] RAMIREZ J, WOLLNACK J. Flexible automated assembly systems for large CFRP-structures[J]. Procedia Technology, 2014, 15:447-455.
[13] STOLT A, LINDEROTH M, ROBERTSSON A, et al. Force controlled assembly of flexible aircraft structure[C]//2013 IEEE International Conference on Robotics and Automation, 2013:6027-6032.
[14] 罗中海, 孟祥磊, 巴晓甫, 等. 飞机大部件调姿平台力位混合控制系统设计[J]. 浙江大学学报(工学版), 2015, 49(2):265-274. LUO Z H, MENG X L, BA X F, et al. Design on hybrid force position control of large components posture alignment platform[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(2):265-274(in Chinese).
[15] WEN K, DU F Z, ZHANG X. Algorithm and experiments of six-dimensional force/torque dynamic measurements based on a Stewart platform[J]. Chinese Journal of Aeronautics, 2016, 29(6):1840-1851.
[16] FANG Q, CHEN W, ZHAO A, et al. Control system designing for correcting wing-fuselage assembly deformation of a large aircraft[J]. Assembly Automation, 2017, 37(1):22-33.
[17] BERTELSMEIER F, DETERT T, UBELHOR T, et al. Cooperating robot force control for positioning and untwisting of thin walled components[J]. Advances in Robotics & Automation, 2017, 6(3):1-7.
[18] SUN D, MILLS J K, LIU Y. Position control of robot manipulators manipulating a flexible payload[J]. International Journal of Robotics Research, 1999, 18(18):319-332.
[19] SCHMITT R, CORVES B, LOOSEN P, et al. Integrative Production Technology[M]. Springer International Publishing, 2017.
[20] 宋轶民, 王晓莉, 连宾宾, 等. 一种1T2R卧式布局并联机构的重力补偿策略[J]. 天津大学学报(自然科学与工程技术版), 2015, 48(7):596-604. SONG Y M, WANG X L, LIAN B B, et al. Gravity compensation strategy of a 1T2R parallel manipulator with horizontal layout[J]. Journal of Tianjin University (Science and Technology), 2015, 48(7):596-604(in Chinese).
[21] 王宏民, 杜志江, 闫志远, 等. 混联式主操作手重力补偿算法[J]. 机器人, 2014, 36(1):111-116. WANG H M, DU Z J, YAN Z Y, et al. Gravity compensation algorithm for hybrid master manipulator[J]. Robot, 2014, 36(1):111-116(in Chinese).
[22] 蒋再男, 刘宏, 黄剑斌, 等. 基于阻抗内环的新型力外环控制策略[J]. 航空学报, 2009, 30(8):1515-1520. JIANG Z N, LIU H, HUANG J B, et al. Novel explicit force control strategy based on impedance inner control[J]. Acta Aeronautica et Astronautica Sinica, 2009, 30(8):1515-1520(in Chinese).
[23] SCHMITT R, JATZKOWSKI P, JANSSEN M, et al. Self-optimization in large scale assembly[J]. Procedia Engineering, 2013, 63:843-851.
文章导航

/