电子电气工程与控制

非合作航天器姿态接管无辨识预设性能控制

  • 殷泽阳 ,
  • 罗建军 ,
  • 魏才盛 ,
  • 王嘉文
展开
  • 1. 西北工业大学 航天学院, 西安 710072;
    2. 西北工业大学 航天飞行动力技术重点实验室, 西安 710072

收稿日期: 2018-01-11

  修回日期: 2018-04-29

  网络出版日期: 2018-08-16

基金资助

国家自然科学基金(61690210,61690211);西北工业大学博士论文创新基金(CX201711)

Estimation-free and prescribed performance control of attitude takeover for non-cooperative spacecraft

  • YIN Zeyang ,
  • LUO Jianjun ,
  • WEI Caisheng ,
  • WANG Jiawen
Expand
  • 1. School of Astronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Science and Technology on Aerospace Flight Dynamics Laboratory, Northwestern Polytechnical University, Xi'an 710072, China

Received date: 2018-01-11

  Revised date: 2018-04-29

  Online published: 2018-08-16

Supported by

National Natural Science Foundation of China (61690210,61690211); Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University (CX201711)

摘要

在对非合作航天器进行姿态接管控制时,可能面对目标航天器参数未知、构型改变引起的不确定性及目标施加的非合作控制输入等挑战。针对上述问题提出了一种基于预设性能控制理论的非合作航天器姿态接管控制方法。首先,建立了姿态跟踪运动的非奇异拉格朗日型模型;然后,利用跟踪微分器构造不包含角速度信息的广义状态量,设计无需参数辨识的非奇异预设性能控制器,并证明了系统状态变量的有界性和控制系统在预设的性能指标以内。最后,通过数值仿真验证了所提出方法的有效性及其对时变参数不确定性和非合作控制输入的鲁棒性。

本文引用格式

殷泽阳 , 罗建军 , 魏才盛 , 王嘉文 . 非合作航天器姿态接管无辨识预设性能控制[J]. 航空学报, 2018 , 39(11) : 322011 -322022 . DOI: 10.7527/S1000-6893.2018.22011

Abstract

The control of attitude takeover for non-cooperative spacecraft faces challenges of the unknown dynamics, spacecraft reconfiguration and non-cooperative attitude maneuvering. An attitude takeover control method based on prescribed performance control theory is presented for non-cooperative spacecraft. Firstly, a nonsingular Lagrangian model for attitude tracking is constructed. Then, using the tracking differentiator, an extended state without the information of angular velocity is proposed and an estimation-free, nonsingular, and prescribed performance controller of attitude takeover is designed, proving the boundedness of the system states and the stability of the system. Finally, two groups of numerical simulations are organized to validate the effectiveness of the proposed method and the robustness against the uncertainties of time-varying parameter and the inputs of non-cooperative attitude control.

参考文献

[1] 梁斌, 杜晓东, 李成, 等. 空间机器人非合作航天器在轨服务研究进展[J]. 机器人, 2012, 34(2): 242-256. LIANG B, DU X D, LI C, et al. Advances in space robot on-orbit servicing for non-cooperative spacecraft[J]. Robot, 2012, 34(2): 242-256 (in Chinese).
[2] 黄攀峰, 王明, 常海涛, 等. 空间机器人抓捕目标后姿态接管控制[J]. 航空学报, 2015, 36(9): 3165-3175. HUANG P F, WANG M, CHANG H T, et al. Attitude takeover control after capture of target by a space robot[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(9): 3165-3175 (in Chinese).
[3] DEBUS T, DOUGHERTY S. Overview and performance of the front-end robotics enabling near-term demonstration (FREND) robotic arm[C]//AIAA Infotech Aerospace Conference. Reston, VA: AIAA, 2009: 1-12.
[4] 黄攀峰, 鲁迎波, 王明, 等. 参数未知航天器的姿态接管控制[J]. 控制与决策, 2017, 32(9): 1547-1555. HUANG P F, LU Y B, WANG M, et al. Attitude takeover control after capture of target by a space robot[J]. Control and Decision, 2017, 32(9): 1547-1555 (in Chinese).
[5] 刘厚德, 梁斌, 李成, 等. 航天器抓捕后复合体系统稳定的协调控制研究[J]. 宇航学报, 2012, 33(7): 920-929. LIU H D, LIANG B, LI C, et al. Research on coordinated control method for stabilizing a coupling system after the spacecraft is captured[J]. Journal of Astronautics, 2012, 33(7): 920-929 (in Chinese).
[6] HUANG P, WANG M, MENG Z, et al. Attitude takeover control for post-capture of target spacecraft using space robot[J]. Aerospace Science & Technology, 2016, 51: 171-180.
[7] ABIKO S, HIRZINGER G. On-line parameter adaptation for a momentum control in the post-grasping of a tumbling target with model uncertainty[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego: IEEE Industrial Electronics Society, 2007: 847-852.
[8] NGUYENHUYNH T C, SHARF I. Adaptive reactionless motion and parameter identification in postcapture of space debris[J]. Journal of Guidance, Control and Dynamics, 2013, 36(2): 404-414.
[9] 韦文书, 荆武兴, 高长生. 捕获非合作目标后航天器的自主稳定技术研究[J]. 航空学报, 2013, 34(7): 1520-1530. WEI W S, JING W X, GAO C S. Research automatic stability technology of spacecraft assembly with captured non-cooperative targets on orbit[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(7): 1520-1530 (in Chinese).
[10] HUANG P, WANG M, MENG Z, et al. Reconfigurable spacecraft attitude takeover control in post-capture of target by space manipulators[J]. Journal of the Franklin Institute, 2016, 353(9): 1985-2008.
[11] 殷泽阳, 罗建军, 魏才盛, 等. 非合作目标接近与跟踪的低复杂度预设性能控制[J]. 宇航学报, 2017, 38(8): 855-864. YIN Z Y, LUO J J, WEI C S, et al. Low-complexity prescribed performance control for approaching and tracking with a non-cooperative target[J]. Journal of Astronautics, 2017, 38(8): 855-864 (in Chinese).
[12] WANG D, HUANG P, MENG Z. Coordinated stabilization of tumbling targets using tethered space manipulators[J]. IEEE Transactions on Aerospace & Electronic Systems, 2015, 51(3): 2420-2432.
[13] YOUNES A B, MORTARI D, TURNER J D, et al. Attitude error kinematics[J]. Journal of Guidance, Control and Dynamics, 2014, 37(1): 330-335.
[14] JIA Y. Finite-time attitude tracking control for a rigid spacecraft using time-varying terminal sliding mode techniques[J]. International Journal of Control, 2015, 88(6): 1150-1162.
[15] WU T H, LEE T. Angular velocity observer on the special orthogonal group for velocity-free rigid-body attitude tracking control[C]//European Control Conference. Piscataway, NJ: IEEE Press, 2015: 1824-1829.
[16] BECHLIOULIS C P, ROVITHAKIS G A. Robust adaptive control of feedback linearizable MIMO nonlinear systems with prescribed performance[J]. IEEE Transactions on Automatic Control, 2008, 53(9): 2090-2099.
[17] THEODORAKOPOULOS A, ROVITHAKIS G A. Low-complexity prescribed performance control of uncertain MIMO feedback linearizable systems[J]. IEEE Transactions on Automatic Control, 2016, 61(7): 1946-1952.
[18] WANG X, LIN H. Design and frequency analysis of continuous finite-time-convergent differentiator[J]. Aerospace Science and Technology, 2011, 18(1): 69-78.
[19] SONTAG E D. Mathematical control theory: deterministic finite dimensional systems[M]. Berlin: Springer-Verlag, 1998.
[20] CHEN M, GE S S, HOW B V E, et al. Robust adaptive position mooring control for marine vessels[J]. IEEE Transactions on Control Systems Technology, 2013, 21(2): 395-409.
文章导航

/