面向森林灭火和水上救援任务设计的大型水陆两栖飞机,由于其特殊的任务模式,给设计工作带来了许多全新的挑战。首先,分析了国内森林灭火和水上救援的需求,并介绍了对应的任务模式。然后,总结了在型号研制过程中不同于常规飞机的特殊设计和相应的解决方法,具体包括:以国内供应商为主体的构型管理体系的建立、气水动一体化设计、全新的起落架布局设计、任务系统集成和效能评估、驾驶舱集成设计、设备布置和腐蚀防护设计。最后,提出了在适航审定和集成应用方面仍需重点关注的4个研究方向。
The design of a large-scale amphibious aircraft for forest fire fighting and rescue mission on river or sea faces many challenges due to its special mission models. First, the domestic demands of forest fire fighting and rescue mission on river or sea are analyzed. Second, the special design different form the regular aircraft and the corresponding solutions are summarized, including the establishment of configuration management based on the domestic supplier, the integrated design of aerodynamics and hydrodynamics, the new design of the landing gear, the integration of mission systems and the evaluation of effectiveness, the integrated design of the cockpit, the arrangement of the equipment and the design of corrosion protection and control. Finally, four valuable problems with respect to aircraft airworthiness certification and application are proposed.
[1] 刘大响, 王湘穗. 安国利民的重大战略举措——大力发展我国航空应急救援能力的思考[J]. 中国工程科学, 2009, 11(6):68-73. LIU D X, WANG X S. The practicable technique way of earthquake prediction-Thoughts on developing China's air emergency rescue ability[J]. Engineering Sciences, 2009, 11(6):68-73(in Chinese).
[2] 苏立娟, 何友均, 陈绍志. 1950-2010年中国森林火灾时空特征及风险分析[J]. 林业科学, 2015, 51(1):88-96. SU L J, HE Y J, CHEN S Z. Temporal and spatial characteristics and risk analysis of forest fires in China from 1950 to 2010[J]. Scientia Silvae Sinicae, 2015, 51(1):88-96(in Chinese).
[3] TIDWELL T. Nationwide aerial application of fire retardant[R]. Washington, D.C.:U.S. Department of Agriculture, Forest Service, 2011.
[4] 刘庆华. 从"蛟龙600"研制探索陕飞民机发展之路[C]//中国航空学会管理科学专业委员会2014年学术会议论文集. 北京:中国航空学会管理科学专业委员会, 2014:274-277. LIU Q H. Exploring the way of development of civil aircraft for Shanxi aircraft company based on the TA600 program[C]//The Paper Collection of 2014 Academic Conference for Chinese Society of Aeronautics and Astronautics, Management Science Committee. Beijing:Chinese Society of Aeronautics and Astronautics, Management Science Committee, 2014:274-277(in Chinese).
[5] 詹家礼. 大型水陆两栖飞机起落架方案设计及相关技术研究[D]. 南京:南京航空航天大学, 2010:1-4. ZHAN J L. Conceptual design of landing gear and research on relative technologies for large-scale amphibious aircraft[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2010:1-4(in Chinese).
[6] 田艺枫. 面向飞行器体系化设计的建模与优化方法研究[D]. 北京:北京航空航天大学, 2016:12-15. TIAN Y F. Research on modeling and optimization methods of aircraft system-of-systems oriented design[D]. Beijing:Beihang University, 2016:12-15(in Chinese).
[7] PIENAAR A, KRUGER P S, ADENDORFF K. An evaluation model for quantifying system value[J]. ⅡE transactions, 1986, 18(1):10-15.
[8] BOUTHONNIER V, LEVIS A H. Effectiveness analysis of C3 systems[J]. IEEE Transactions on Systems, Man and Cybernetics, 1984, 14(1):48-54.
[9] GUTJAHR W J, KATZENSTEINER S, REITER P, et al. Multi-objective decision analysis for competence-oriented project portfolio selection[J]. European Journal of Operational Research, 2010, 205(3):670-679.
[10] BANKES S. Exploratory modeling for policy analysis[J]. Operations Research, 1993, 41(3):435-449.
[11] LIU H, TIAN Y, GAO Y, et al. System of systems oriented flight vehicle conceptual design:Perspectives and progresses[J]. Chinese Journal of Aeronautics, 2015, 28(3):617-635.
[12] 唐扬刚, 贺小帆, 刘文珽, 等. 飞机连接结构防护涂层老化损伤量化评估方法[J]. 航空学报, 2017, 38(1):141-153. TANG Y G, HE X F, LIU W T, et al. Quantitative method for evaluating aging damage of protective coatings of aircraft joint structures[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(1):141-153(in Chinese).
[13] RUSSO S, SHARP P K, DHAMARI R, et al. The influence of the environment and corrosion on the structural integrity of aircraft materials[J]. Fatigue & Fracture of Engineering Materials & Structures, 2009, 32(6):464-472.
[14] 杨洪源, 刘文珽. 民机结构外露关键部位涂层加速腐蚀环境谱研究[J]. 航空学报, 2007, 28(1):90-93. YANG H Y, LIU W T. Accelerated corrosion environmental spectra of surface coating of civil aircraft structure[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(1):90-93(in Chinese).
[15] 宋恩鹏, 刘文珽, 杨旭. 飞机内部腐蚀关键部位加速试验环境谱研究[J]. 航空学报, 2006, 27(4):646-649. SONG E P, LIU W T, YANG X. Study on accelerated corrosion test environment spectrum for internal aircraft structure[J]. Acta Aeronautica et Astronautica Sinica, 2006, 27(4):646-649(in Chinese).
[16] 胡芳友, 王茂才, 温景林. 沿海飞机铝合金结构件腐蚀与防护[J]. 腐蚀科学与防护技术, 2003,15(2):97-100. HU F Y, WANG M C, WEN J L. Corrosion analysis of aluminum alloys for aircraft structure components and its protection[J]. Corrosion Science and Protection Technology, 2003, 15(2):97-100(in Chinese).
[17] 中国民用航空局. 中国民用航空规章第25部:运输类飞机适航标准:CCAR-25-R4[S]. 北京:中国民用航空局, 2011. Civil Aviation Administration of China. China civil aviation regulations part 25 airworthiness standards:Transport category airplanes:CCAR-25-R4[S]. Beijing:Civil Aviation Administration of China, 2011(in Chinese).
[18] U. S. Department of Transportation Federal Aviation Administration. Design considerations for minimizing hazards caused by uncontained turbine engine and auxiliary power unit rotor failure:AC 20-128A[S]. Washington, D. C.:U. S. Department of Transportation Federal Aviation Administration, 1997.
[19] 陈志达. 民航客机发动机转子非包容性损坏分析[J]. 航空制造技术, 2011(13):75-79. CHEN Z D. Analysis of uncontained engine rotor events for civil airplane[J]. Aeronautical Manufacturing Technology, 2011(13):75-79(in Chinese).
[20] U. S. Department of Transportation Federal Aviation Administration. Installed systems and equipment for use by the flightcrew:AC 25.1302-1[S]. Washington, D. C.:U. S. Department of Transportation Federal Aviation Administration, 2013.
[21] PRITCHETT A R, VANDOR B, EDWARDS K. Testing and implementing cockpit alerting systems[J]. Reliability Engineering & System Safety, 2002, 75(2):193-206.