材料工程与机械制造

飞机管道颗粒碰撞阻尼器设计与试验验证

  • 於为刚 ,
  • 陈果 ,
  • 刘彬彬 ,
  • 寸文渊 ,
  • 张茂林 ,
  • 赵正大 ,
  • 陈雪梅 ,
  • 侯民利
展开
  • 1. 南京航空航天大学 民航学院, 南京 210016;
    2. 成都飞机工业(集团)有限责任公司, 成都 610092;
    3. 航空工业哈尔滨飞机工业集团有限责任公司, 哈尔滨 150066

收稿日期: 2018-05-03

  修回日期: 2018-05-31

  网络出版日期: 2018-08-13

基金资助

国家自然科学基金(51675263);成都飞机工业(集团)有限责任公司项目

Design of a particle damping absorber and experimental study on vibration damping of the pipe

  • YU Weigang ,
  • CHEN Guo ,
  • LIU Binbin ,
  • CUN Wenyuan ,
  • ZHANG Maolin ,
  • ZHAO Zhengda ,
  • CHEN Xuemei ,
  • HOU Minli
Expand
  • 1. College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;
    2. Chengdu Aircraft Industrial(Group) Co., Ltd., Chengdu 610092, China;
    3. AVIC Harbin Aircraft Industry Group Co., Ltd., Harbin 150066, China

Received date: 2018-05-03

  Revised date: 2018-05-31

  Online published: 2018-08-13

Supported by

National Natural Science Foundation of China (51675263);Chengdu Aircraft Industrial (Group) Co.,Ltd Foundation

摘要

飞机管道振动超标是严重威胁飞机飞行安全的重要故障,降低飞机管道振动水平,对于提高飞机可靠性和安全性具有重要意义。针对难于施加管道卡箍约束的飞机管道结构的减振问题,设计了一种基于颗粒碰撞阻尼技术的管道减振器。该减振器通过特定的结构设计,在不影响现有管道结构的基础上,很方便地安装到管道上进行减振。其减振原理是基于减振器内部的颗粒碰撞而导致的能量耗散,从而提高管道结构的阻尼效应。因此,将此颗粒碰撞阻尼器安装在振动管道上,在管道发生共振的情况下,管道振动峰值将明显降低。本文基于所设计的管道减振器,利用振动台试验研究了颗粒填充率对减振效果的影响,发现改变阻尼器内部颗粒的填充率,管道的振动随颗粒填充率的增加有先减小后增大的趋势,同时利用EDEM颗粒流仿真软件计算了减振器振动过程中颗粒的能量耗散情况,发现颗粒能量耗散速率最大时所对应的颗粒填充率与试验过程中管道振动加速度降到最低时所对应的颗粒填充率达到了一致,仿真结果与试验结果取得了很好的一致性。最后,将所设计的颗粒阻尼减振器安装在液压动力源管道上进行实际减振试验,测试了在安装减振器前后,试验管道在XYZ三个方向的振动加速度,经过对比分析,发现安装颗粒阻尼减振器后,液压管道的压力脉动频率下的振动水平得到了明显抑制,试验结果充分表明了本文所设计的飞机管道颗粒减振器的有效性和实用性。

本文引用格式

於为刚 , 陈果 , 刘彬彬 , 寸文渊 , 张茂林 , 赵正大 , 陈雪梅 , 侯民利 . 飞机管道颗粒碰撞阻尼器设计与试验验证[J]. 航空学报, 2018 , 39(12) : 422264 -422264 . DOI: 10.7527/S1000-6893.2018.22264

Abstract

Aircraft pipeline vibration is an important fault that seriously threatens flight safety. It is of great significance to reduce the vibration level of aircraft pipeline and improve the reliability and safety of aircraft. Aiming at the vibration reduction of aircraft pipeline structure which is difficult to be constrained by pipe clamps, a pipeline vibration absorber based on particle impact damping technique is designed. Through ingenious structural deign, the vibration absorber is conveniently clamped to the existing pipeline without affecting the existing pipeline structure. Based on the energy dissipation caused by the particle collision inside the damper, the damping effect of the pipeline structure is improved. Therefore, if the particle impact damper is installed on the vibrating pipe, the peak vibration of the pipeline will be significantly reduced when the pipeline resonates. In this paper, the influence of the particle filling ratio on damping effect is studied by shaking table test, and it is found that the vibration of the pipeline tends to decrease first and then increase with the increase of particle filling ratio. At the same time, using EDEM particle flow simulation software, the energy dissipation of particles in vibration process of absorber is calculated. It is found that the particle filling rate corresponding to the maximum particle energy dissipation rate is in agreement with the particle filling rate when the vibration acceleration of the pipeline decreases to the lowest, and the simulation results are in good agreement with the test results. Finally, the designed particle damper is installed on the hydraulic power supply pipeline for actual tests of vibration absorption. The vibration acceleration of the test pipe in three directions X,Y,Z before and after the installation of the damper is tested, and the results are compared and analyzed. It is found that the vibration level of hydraulic pipeline under pressure pulsation frequency is significantly restrained after the installation of particle damper. The experimental results fully suggest the effectiveness and practicability of the aircraft pipeline particle damper designed in this paper.

参考文献

[1] 党锡淇, 黄幼玲. 工程中的管道振动问题[J]. 力学与实践, 1993, 15(4):9-16. DANG X Q, HUANG Y L. Pipe vibration problem in engineering[J]. Mechanics in Engineering, 1993, 15(4):9-16(in Chinese).
[2] 吕奇峰, 张卫红, 张桥. 随机振动响应下的组件结构布局优化设计[J]. 航空学报, 2010, 31(9):1769-1775. LU Q F, ZHANG W H, ZHANG Q. Layout design optimization of component structure with random vibration response[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(9):1769-1775(in Chinese).
[3] 刘伟, 曹刚, 翟红波, 等. 发动机管路卡箍位置动力灵敏度分析与优化设计[J]. 航空动力学报, 2012, 27(12):2756-2762. LIU W, CAO G, ZHAI H B, et al. Sensitivity analysis and dynamic optimization design of supports' positions for engine pipelines[J]. Journal of Aerospace Power, 2012, 27(12):2756-2762(in Chinese).
[4] 李鑫, 王少萍. 基于卡箍优化布局的飞机液压管路减振分析[J]. 振动与冲击, 2013, 32(1):14-20. LI X, WANG S P. Vibration control analysis for hydraulic pipelines in an aircraft based on optimized clamp layout[J]. Journal of Vibration and Shock, 2013, 32(1):14-20(in Chinese).
[5] 智友海, 史向平. 飞机管路系统卡箍位置的可靠性优化设计[J]. 飞机设计, 2010(6):75-80. ZHI Y H, SHI X P. Reliability optimization designs of clamp's locations for airplane pipeline system[J]. Aircraft Design, 2010(6):75-80(in Chinese).
[6] 尹泽勇, 陈亚农. 卡箍刚度的有限元计算与实验测定[J]. 航空动力学报, 1999, 14(2):68-71, 110. YIN Z Y, CHEN Y N. Finite element an analysis and experimental measurement of stiffness of hoop[J]. Journal of Aerospace Power, 1999, 14(2):68-71, 110(in Chinese).
[7] 何宇廷, 杨少华, 冯立富. 飞机地面压力加油系统导管卡箍固定问距的确定[J]. 机械科学与技术, 2000(5):726-728. HE Y T, YANG S H, FENG L F. On the determination of fixture intervals of pipe hoops of aircraft ground pressure refueling system[J]. Mechanical Science and Technology, 2000(5):726-728(in Chinese).
[8] 王晶, 陈果, 郑其辉, 等. 卡箍对飞机液压管道动态应力的影响分析[J]. 航空计算技术, 2014, 44(1):64-67. WANG J, CHEN G, ZHENG Q H, et al. Effect of clamp on aircraft hydraulic pipeline dynamic stress[J]. Aeronautical Computing Technique, 2014, 44(1):64-67(in Chinese).
[9] ZHU J H, ZHANG W H. Maximization of structural natural frequency with optimal support layout[J]. Structural and Multidisciplinary Optimization, 2006, 31(6):462-469.
[10] CHIBA T, KOBAYASHI H. Response characteristics of piping system support by viscous-elastic and elastic-plastic dampers[J]. Journal of Pressure Vessel Technology, 1990, 112(1):34-38.
[11] 姜洋, 何立东, 伍伟. 丙烷塔空冷器集合管管道阻尼减振技术研究[J]. 石油化工设备技术, 2011, 32(2):19-24. JIANG Y, HE L D, WU W. Research on damping technology in air cooler concentrated pipe of propane tower[J]. Petrochemical Equipment Technology, 2011, 32(2):19-24(in Chinese).
[12] 陈果, 程小勇, 刘明华, 等. 用于管道减振的新型动力吸振器研究[J]. 中国机械工程, 2014, 25(23):3125-3131. CHEN G, CHENG X Y, LIU M H, et al. A new type of dynamic vibration absorber for pipe system vibration suppression[J]. China Mechanical Engineering, 2014, 25(23):3125-3131(in Chinese).
[13] 周笛, 陈果, 刘明华, 等. 一种可调频式的管路动力吸振器研究与实验验证[J]. 噪声与振动控制, 2015, 35(2):217-221. ZHOU D, CHEN G, LIU M H, et al. Study and experimental verification on a dynamic vibration absorber with frequency adjustable[J]. Noise and Vibration Control, 2015, 35(2):217-221(in Chinese).
[14] 杜妍辰, 张虹. 带弹性支撑的颗粒碰撞阻尼的减振机理研究[J]. 振动与冲击, 2017, 36(13):67-73. DU Y C, ZHANG H. Damping mechanism of an elastically supported particle impact damper[J]. Journal of Vibration and Shock, 2017, 36(13):67-73(in Chinese).
[15] 马爱军, 刘洪英, 石蒙, 等. 薄壳结构减振设计中橡胶材料特性影响实验研究[J]. 航天医学与医学工程, 2017, 30(5):374-377. MA A J, LIU H Y, SHI M, et al. Experimental study on influence of rubber properties on isolator design of thin shell product[J]. Space Medicine & Medical Engineering, 2017, 30(5):374-377(in Chinese).
[16] 张欢, 李光辉, 梁恩波. 一种摩擦阻尼器在整体叶盘结构的应用[J]. 航空动力学报, 2017, 32(4):800-807. ZHANG H, LI G H, LIANG E B. Application of a friction damper in blisk structure[J]. Journal of Aerospace Power, 2017, 32(4):800-807(in Chinese).
[17] 赵少伟, 韩松. 不规则框架结构粘滞流体阻尼器优化布置研究[J]. 工程抗震与加固改造, 2017, 39(1):84-90. ZHAO S W, HAN S. Research on optimization arrangement of fluid viscous damper in irregular frame structure[J]. Earthquake Resistant Engineering and Retrofitting, 2017, 39(1):84-90(in Chinese).
[18] PAGET A L. Vibration in steam turbine buckets and damping by impacts[J]. Engineering, 1937, 143:305-307.
[19] 鲁正, 吕西林, 闫维明. 颗粒阻尼技术研究综述[J]. 振动与冲击, 2013, 32(7):1-7. LU Z, LÜ X L, YAN W M. A survey of particle damping technology[J]. Journal of Vibration and Shock, 2013, 32(7):1-7(in Chinese).
[20] LU Z, MASRI S F, LU X. Studies of the performance of particle dampers attached to a two-degrees-of-freedom system under random excitation[J]. Journal of Vibration & Control, 2011, 17(10):1454-1471.
[21] CUNDALL P A. The measurement and analysis of accelerations in rock slopes[D]. London:University of London, 1971.
[22] ZHAO N, ZHAO F, ZHONG W Z. EDEM simulation study of lignite pressing molding with different particle size[C]//International Conference on Computer, Mechatronics, Control and Electronic Engineering. 2015.
文章导航

/