流体力学与飞行力学

自适应设计空间扩展的高效代理模型气动优化设计方法

  • 王超 ,
  • 高正红 ,
  • 张伟 ,
  • 夏露 ,
  • 黄江涛
展开
  • 1. 西北工业大学 航空学院,西安 710072;
    2. 中国空气动力研究与发展中心 计算空气动力研究所,绵阳 621000

收稿日期: 2017-09-15

  修回日期: 2018-04-17

  网络出版日期: 2018-07-27

基金资助

国家自然科学基金(11372254,11402288)

Efficient surrogate-based aerodynamic design optimization method with adaptive design space expansion

  • WANG Chao ,
  • GAO Zhenghong ,
  • ZHANG Wei ,
  • XIA Lu ,
  • HUANG Jiangtao
Expand
  • 1. School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China;
    2. Computational Aerodynamics Institute, China Aerodynamic Research and Development Center, Mianyang 621000, China

Received date: 2017-09-15

  Revised date: 2018-04-17

  Online published: 2018-07-27

Supported by

National Natural Science Foundation of China (11372254,11402288)

摘要

对基于Kriging模型气动优化的加点方法和设计空间的构建问题进行了研究。首先,针对高效全局优化(EGO)方法收敛缓慢的问题,提出了一种混合加点方法,该方法通过引入期望提高(EI)阈值控制EI和最小预测值(MP)加点准则,利用先全局再局部的优化思想,提高了EGO方法在确定设计空间内的收敛性。其次,针对设计空间的构建问题,对比了扩大设计变量范围和多轮优化两种不同的设计空间构建方法,分析了设计变量范围对设计空间大小和样本密度的影响,进而提出了自适应设计空间扩展的代理模型优化方法。相对于传统固定设计空间的方法,自适应设计空间扩展的方法在动态的设计空间中进行优化搜索,只在有潜力的维度扩展设计变量范围,通过构建自适应设计空间,实现了样本的高效配置。最后,通过ADODG标准翼型优化算例证实,自适应设计空间优化方法可以大幅提高气动优化设计效率。

本文引用格式

王超 , 高正红 , 张伟 , 夏露 , 黄江涛 . 自适应设计空间扩展的高效代理模型气动优化设计方法[J]. 航空学报, 2018 , 39(7) : 121745 -121745 . DOI: 10.7527/S1000-6893.2018.21745

Abstract

The infill criterion and design space construction in Kriging-based aerodynamic shape optimization are studied in this paper. A hybrid infill method is proposed, which combines the Expected Improvement (EI) criterion and the Minimum Prediction (MP) criterion using an EI threshold. Global exploration is first implemented by the IE criterion, and local exploitation is then implemented by the MP criterion. Consequently, the convergence rate of Efficient Global Optimization (EGO) is accelerated in a certain design space. To find the global optimum in aerodynamic shape optimization, expansion of the design variable range and multi-round method are employed. Influence of the variable range on the size of design space and density of samples are discussed. To improve the efficiency of samples, an adaptive design space expansion method is proposed. In this method, the design space is dynamic and the range of design variable is expanded in potential dimensions. Accordingly, the samples are allocated efficiently through adaptive expansion of design space boundaries. ADODG airfoil optimization cases show that the adaptive design space expansion method has remarkable superiority over the conventional fixed design space method.

参考文献

[1] QUEIPO N V, HAFTKA R T, SHYY W, et al. Surrogate-based analysis and optimization[J]. Progress in Aerospace Sciences, 2005, 41(1):1-28.
[2] FORRESTER A I J, KEANE A J. Recent advances in surrogate-based optimization[J]. Progress in Aerospace Sciences, 2009, 45(1):50-79.
[3] SIMPSON T W, MAUERY T M, KORTE J J, et al. Kriging models for global approximation in simulation-based multidisciplinary design optimization[J]. AIAA Journal, 2001, 39(12):2233-2241.
[4] WANG G G, SHAN S. Review of metamodeling techniques in support of engineering design optimization[J]. Journal of Mechanical Design, 2007, 129(4):370-380.
[5] GUTMANN H M. A radial basis function method for global optimization[J]. Journal of Global Optimization, 2001, 19:201-227.
[6] SACKS J, WELCH W J, MITCHELL T J, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4(4):409-423.
[7] GUNN S R. Support vector machines for classification and regression[R]. Southampton:University of Southampton, 1998.
[8] RASMUSSEN C E, WILLIAMS C K I. Gaussian processes for machine learning[M]. Massachusetts:The MIT Press, 2006,
[9] JONES D R, SCHONLAU M, WELCH W J. Efficient global optimization of expensive black-box functions[J]. Journal of Global Optimization, 1998, 13(4):455-492.
[10] LOCATELLI M. Bayesian algorithms for one-dimensional global optimization[J]. Journal of Global Optimization, 1997, 10(1):57-76.
[11] JONES D R. A taxonomy of global optimization methods based on response surface[J]. Journal of Global Optimization, 2001, 21(4):345-383.
[12] SCHONLAU M, WELCH W J. Global versus local search in constrained optimization of computer models[J]. Lecture Notes-Monograph Series, 1998, 34:11-25.
[13] SASENA M J. Flexibility and efficiency enhancements for constrained global design optimization with kriging approximations[D]. Michigan:University of Michigan, 2002.
[14] LIU J, HAN Z H, SONG W P. Comparison of infill sampling criteria in Kriging-based aerodynamic optimization[C]//28th International Congress of the Aeronautical Sciences, 2012.
[15] 韩忠华. Kriging模型及代理优化算法研究新进展[J]. 航空学报,2016, 37(11):3197-3225. HAN Z H. Kriging surrogate model and its application to design optimization:A review of recent progress[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(11):3197-3225(in Chinese).
[16] SOBESTER A, LEARY S J, KEANE A J. A parallel updating scheme for approximation and optimization high fidelity computer simulations[J]. Structure and Multidisciplinary Optimization, 2004, 27(5):371-383.
[17] GINSBOURGER D, LE RICHE R, CARRARO L. A multi-points criterion for deterministic parallel global optimization based on kriging[C]//The International Conference on Nonconvex Programming:Local and Global Approaches, 2007.
[18] GINSBOURGER D, LE RICHE R, CARRARO L. Kriging is well-suited to parallelize optimization[M]//Computational Intelligence in Expensive Optimization Problems, Berlin:Springer, 2010:131-162.
[19] LIU J, SONG W P, HAN Z H, et al. Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models[J]. Structural & Multidisciplinary Optimization, 2017, 55(3):1-19.
[20] 张德虎, 高正红, 李焦赞, 等. 代理模型选样准则研究[J]. 空气动力学学报, 2011, 29(6):719-725. ZHANG D H, GAO Z H, LI J Z, et al. Study of metamodel sampling criterion[J]. Acta Aerodynamica Sinica, 2011, 29(6):719-725(in Chinese).
[21] ZHANG Y, HAN Z H, SHI L X, et al. Multi-round surrogate-based optimization for benchmark aerodynamic design problems:AIAA-2016-1545[R]. Reston, VA:AIAA, 2016.
[22] NADARAJAH S. Aerodynamic design optimization:Drag minimization of the NACA0012 in transonic inviscid and the RAE2822 in transonic viscous flow[EB/OL].[2017-09-15]. https://info.aiaa.org/tac/ASG/APATC/AeroDesignOpt-DG/Test.
[23] SACKS J, WELCH W J, MITCHELL T J, et al. Design and analysis of computer experiments[J]. Statistical Science, 1989, 4(4):409-423.
[24] JEONG S, MURAYAMA M, YAMAMOTO K. Efficient optimization design method using Kriging model[J]. Journal of Aircraft, 2005, 42(2):413-420.
[25] KUMANO T, JEONG S, OBAYASHI S, et al. Multidisciplinary design optimization of wing shape for a small jet aircraft using kriging model:AIAA-2006-0932[R]. Reston, VA:AIAA, 2006.
[26] KANAZAKI M, IMAMURA T, JEONG S, et al. High-lift wing design in consideration of sweep angle effect using kriging mode:AIAA-2008-0175[R]. Reston, VA:AIAA, 2008.
[27] 邓枫. EGO全局优化算法及应用研究[D]. 南京:南京航空航天大学, 2011. DENG F. Research on EGO global optimization method and application[D]. Nanjing:Nanjing University of Aeronautics & Astronautics, 2011(in Chinese).
[28] MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 1979, 2(2):239-245.
[29] KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of IEEE International Conference on Neural Networks. Piscataway, NJ:IEEE Press, 1995.
[30] KULFAN B M, BUSSOLETTI J E. Fundamental parametric geometry representations for aircraft component shapes:AIAA-2006-6948[R]. Reston, VA:AIAA, 2006.
[31] CARRIER G, DESTARAC D, DUMONT A, et al. Gradient-based aerodynamic optimization with the elsA software:AIAA-2014-0568[R]. Reston, VA:AIAA, 2014.
[32] BISSON F, NADARAJAH S, SHI-DONG D. Adjoint-based aerodynamic optimization of benchmark problems:AIAA-2014-0412[R]. Reston, VA:AIAA, 2014.
[33] LEE C, KOO D, TELIDETZKI K, et al. Aerodynamic shape optimization of benchmark problems using jetstream:AIAA-2015-0262[R]. Reston, VA:AIAA, 2015.
[34] POOLE D J, ALLEN C B, RENDALL T C S. Control point-based aerodynamic shape optimization applied to AIAA ADODG test cases:AIAA-2015-1947[R]. Reston, VA:AIAA, 2015.
[35] ANDERSON G R, AFTOSMIS M J, NEMEC M. Aerodynamic shape optimization benchmarks with error control and automatic parameterization:AIAA-2015-1719[R]. Reston, VA:AIAA, 2015.
[36] VASSBERG J C, HARRISON N A, ROMAN D L, et al. A systematic study on the impact of dimensionality for a two-dimensional aerodynamic optimization model problem:AIAA-2011-3176[R]. Reston, VA:AIAA, 2011.
文章导航

/