固体力学与飞行器总体设计

循环加载下复合推进剂的能量耗散

  • 童心 ,
  • 陈雄 ,
  • 许进升 ,
  • 杜红英 ,
  • 周长省
展开
  • 1. 南京理工大学 机械工程学院, 南京 210094;
    2. 晋西工业集团有限责任公司 技术中心, 太原 030027

收稿日期: 2018-05-11

  修回日期: 2018-06-19

  网络出版日期: 2018-07-20

基金资助

国家自然科学基金(51606098);江苏省研究生科研创新计划项目(KYCX18_0452)

Energy dissipation of composite propellant under cyclic loading

  • TONG Xin ,
  • CHEN Xiong ,
  • XU Jinsheng ,
  • DU Hongying ,
  • ZHOU Changsheng
Expand
  • 1. School of Mechanical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China;
    2. Technology Center, Jinxi Industries Group Corporation, Taiyuan 030027, China

Received date: 2018-05-11

  Revised date: 2018-06-19

  Online published: 2018-07-20

Supported by

National Natural Science Foundation of China (51606098); Postgraduate Research Innovation Program of Jiangsu Province (KYCX18_0452)

摘要

在空空导弹的挂载飞行阶段,弹体高频振动导致的固体推进剂温升极大地损害了固体火箭发动机的性能。为深入探究固体推进剂的能量耗散及其影响因素,针对某复合推进剂进行了不同应变幅值下的多频率疲劳测试,并利用非接触式红外辐射装置同步采集了循环加载下推进剂试件的表面温度,讨论了频率、应变幅值两个因素对复合推进剂能量耗散的影响。结果发现,复合推进剂由于自身的黏滞性,在外部激励下产生了剧烈的疲劳生热行为,其能量耗散密度随着加载幅值和频率的增大而提高,能量耗散带来的试件表面温度呈现出先增大后稳定的规律。根据能量耗散和温度场方程,建立了复合推进剂疲劳过程中的温升计算模型,利用有限元仿真对不同加载条件下推进剂的滞后温升进行了较好的预测。

本文引用格式

童心 , 陈雄 , 许进升 , 杜红英 , 周长省 . 循环加载下复合推进剂的能量耗散[J]. 航空学报, 2018 , 39(11) : 222322 -222330 . DOI: 10.7527/S1000-6893.2018.22322

Abstract

During the flight period of air-to-air missiles, the temperature rise of the solid propellant caused by high-frequency vibration greatly impairs the performance of the solid rocket motor. To investigate the energy dissipation of the solid propellant and its influencing factors, multi-frequency fatigue tests of a composite propellant at different strain amplitudes were carried out. The surface temperature of the solid propellant specimen under cyclic loading was simultaneously monitored by non-contact infrared camera device. The effects of frequency and strain amplitude on the energy dissipation of the composite propellant were then discussed. The results show that, due to its viscosity, the composite propellant generates a lot of heat under external excitation, and its density of energy dissipation increases with the increase of loading amplitude and frequency. The surface temperature of the specimen due to energy dissipation increases at the first cycles and then stabilizes. Based on the equations of energy dissipation and temperature field, a model for calculating the temperature rise during fatigue of the composite propellant is established, and the hysteretic temperature rise of the composite propellant under different loading conditions is well predicted via finite element simulation.

参考文献

[1] 张艳辉, 史明丽. 空空导弹工作温度分析[J]. 装备环境工程, 2015, 12(2): 99-103. ZHANG Y H, SHI M L. Analysis on operating temperature for air-to-air missiles[J]. Equipment Environmental Engineering, 2015, 12(2): 99-103 (in Chinese).
[2] SUN C, XU J, CHEN X, et al. Strain rate and temperature dependence of the compressive behavior of a composite modified double-base propellant[J]. Mechanics of Materials, 2015, 89: 35-46.
[3] RASMUSSEN B, FREDERICK R A. Nonlinear heterogeneous model of composite solid-propellant combustion[J]. Journal of Propulsion & Power, 2015, 18(5): 1086-1092.
[4] TONG X, CHEN X, XU J, et al. Excitation of thermal dissipation of solid propellants during the fatigue process[J]. Materials & Design, 2017, 128: 47-55.
[5] XU J, CHEN X, WANG H L, et al. Thermo-damage-viscoelastic constitutive model of HTPB composite propellant[J]. International Journal of Solids and Structures, 2014, 51(18): 3209-3217.
[6] JIA D, ZHENG J, CHEN X, et al. Modeling the temperature-dependent mode I fracture behavior of adhesively bonded joints[J]. Journal of Adhesion, 2016, 93(6): 481-503.
[7] 邢耀国, 曲凯, 许俊松, 等. 舰船摇摆条件下固体火箭发动机舰载寿命预估[J]. 推进技术, 2011, 32(1): 32-35. XING Y G, QU K, XU J S, et al. Life prediction of shipborne solid rocket motor under the ship swing motion[J]. Journal of Propulsion Technology, 2011, 32(1): 32-35 (in Chinese).
[8] 高艳宾, 许进升, 陈雄, 等. 应变控制下NEPE推进剂非线性疲劳损伤[J]. 航空动力学报, 2015, 30(6): 1486-1491. GAO Y B, XU J S, CHEN X, et al. Nonlinear fatigue damage of nitrate ester plasticized polyether propellant for strain-control[J]. Journal of Aerospace Power, 2015, 30(6): 1486-1491 (in Chinese).
[9] 梁蔚, 童心, 许进升, 等. 循环载荷下HTPB推进剂温度演化及疲劳性能预测[J]. 含能材料, 2018, 26(4): 301-310. LIANG W, TONG X, XU J S, et al. Temperature evo-lution and fatigue properties prediction of HTPB propellant under cyclic loading[J]. Chinese Journal of Energetic Materials, 2018, 26(4): 301-310 (in Chinese).
[10] 王为清, 杨立, 范春利, 等. 金属材料低周疲劳生热的有限元数值模拟[J]. 机械工程学报, 2013, 49(4): 64-69. WANG W Q, YANG L, FAN C L. Finite element analysis of heat production of metals during low-cycle fatigue process[J]. Journal of Mechanical Engineering, 2013, 49(4): 64-69 (in Chinese).
[11] ALLEN D H. Thermomechanical coupling in inelastic solids[J]. Applied Mechanics Reviews, 1991, 44(8): 361-373.
[12] RITTEL D, RABIN Y. An investigation of the heat generated during cyclic loading of two glassy polymers. Part Ⅱ: Thermal analysis[J]. Mechanics of Materials, 2000, 32(3): 149-159.
[13] GUO Q, ZARI F, GUO X. A thermo-viscoelastic-damage constitutive model for cyclically loaded rubbers. Part I: Model formulation and numerical examples[J]. International Journal of Plasticity, 2018, 101: 106-124.
[14] BENAARBIA A, CHRYSOCHOOS A, ROBERT G. Kinetics of stored and dissipated energies associated with cyclic loadings of dry polyamide 6.6 specimens[J]. Polymer Testing, 2014, 34: 155-167.
[15] BOTELLA R, PÉREZ-JIMÉNEZ F E, RIAHI E, et al. Self-heating and other reversible phenomena in cyclic testing of bituminous materials[J]. Construction and Building Materials, 2017, 156: 809-818.
[16] LAHUERTA F, NIJSSEN R P L, VAN DER MEER F P, et al. Experimental-computational study towards heat generation in thick laminates under fatigue loading[J]. International Journal of Fatigue, 2015, 80: 121-127.
[17] SURESH S. Fatigue of materials[M]. Cambridge: Cambridge University Press, 1998: 50-52.
[18] 童心, 王永平, 许进升, 等. HTPB推进剂的低温疲劳特性[J]. 航空动力学报, 2017, 32(5): 1234-1240. TONG X, WANG Y P, XU J S, et al. Fatigue properties of HTPB propellant at low temperature[J]. Journal of Aerospace Power, 2017, 32(5): 1234-1240 (in Chinese).
[19] 何曼君, 陈维孝, 董西侠. 高分子物理[M]. 3版. 上海: 复旦大学出版社, 2014: 1-10. HE M J, CHEN W X, DONG X X. Polymer physics[M]. 3rd ed. Shanghai: Fudan University Press, 2014: 1-10 (in Chinese).
[20] ZENER C. Elasticity and anelasticity of metals[M]. Chicago, IL: University of Chicago Press, 1948: 22-30.
[21] RITTEL D. An investigation of the heat generated during cyclic loading of two glassy polymers. Part I: Experimental[J]. Mechanics of Materials, 2000, 32(3): 131-147.
[22] ZHANG Y, YOU Y, MOUMNI Z, et al. Experimental and theoretical investigation of the frequency effect on low cycle fatigue of shape memory alloys[J]. International Journal of Plasticity, 2017, 90: 1-30.
[23] QIUSHI L I, LYU Y, PAN T, et al. Development of a coupled supersonic inlet-fan Navier-Stokes simulation method[J]. Chinese Journal of Aeronautics, 2018, 31(2): 237-246.
文章导航

/